期刊文献+

冷轧Cu-15Cr原位复合材料组织和性能研究 被引量:1

Study on Microstructure and Properties of Cold-rolling Cu-15Cr In-situ Composite
下载PDF
导出
摘要 经冷轧变形和中间退火制备了Cu-15Cr形变原位纤维增强复合薄板材料。用SEM、拉伸试验机和电阻率测试仪研究了变形量及退火温度对Cr纤维形貌、合金强度及导电性能的影响。结果表明:随合金变形量的增加,Cr纤维逐渐变薄、变宽,纤维间距逐渐减小,材料的抗拉强度和导电率都逐渐增大。退火温度升高,材料抗拉强度随之降低,导电率先升高后降低,退火温度为550℃时,导电率峰值为84.4%IACS;退火温度升高,Cr纤维依次发生球化,球化加剧、纤维断裂。最终变形量时,材料达到较好的综合性能匹配,退火前抗拉强度和导电率为694 MPa和78%IACS;500℃退火后抗拉强度和导电率为570 MPa和83%IACS。 Cu-15Cr in-situ composite was successfully prepared by heavy cold rolling and intermediate heat treatment. The effects distortion and heat treatment temperature on the Cr fibre microstructure and properties of the composite were investigated by SEM, tensile test machine and resistance test instrument. The results show that: with increasing deformation, the material's tensile strength and conductivity are gradually increasing, Cr fiber grows thinning and wider and fiber spacing decreases gradually. With annealing temperature increased, the material's tensile strength decreases gradually. The conductivity increases at first, then decreases, and the peak value of conductivity, 84.4%IACS appears at 550℃. Meanwhile, Cr fiber firstly spheroidizes, then grows and breaks. With the final deformation, the material achieves good comprehensive performance, the tensile strength and conductivity are 694 MPa/78%IACS (unannealed), 570 MPa/83%IACS (500 ℃).
出处 《热加工工艺》 CSCD 北大核心 2012年第8期96-99,共4页 Hot Working Technology
基金 上海市教委创新项目(11YA112) 上海市教育委员会重点学科建设项目(J50503) 上海市科委基础研究重点项目(10JC1411800) 上海市研究生创新基金项目(JWCXSL1101)
关键词 Cu—Cr 纤维 抗拉强度 导电率 冷轧 Cu-Cr fiber tensile strength electrical conductivity cold-rolling
  • 相关文献

参考文献7

二级参考文献46

  • 1宁远涛,张晓辉,张婕.大变形Cu-Ag合金原位纤维复合材料的稳定性[J].中国有色金属学报,2005,15(4):506-512. 被引量:24
  • 2葛继平,姚再起,刘书华.合金元素对形变Cu-Fe原位复合材料性能的影响[J].材料热处理学报,2005,26(1):14-19. 被引量:17
  • 3姚再起,葛继平,刘书华.形变Cu-11.5%Fe原位复合材料的强度和导电性[J].复合材料学报,2005,22(3):121-125. 被引量:15
  • 4高海燕,王俊,疏达,孙宝德.形变铜基原位复合材料的研究现状及展望[J].材料导报,2006,20(3):87-91. 被引量:13
  • 5Biselli C, Morris D G. Microstructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders[J]. Acta Mater, 1994, 42: 163-176.
  • 6Biselli, Morris D G. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains[J]. Acta Materialia, 1996, 44: 493-504.
  • 7Boltax A. Precipitation processes in copper-rich copper-alloys[J]. Trans Met Soc AIME, 1960, 218: 812-821.
  • 8Verhoeven J D, Downing H L, Chumbley L S, et al. The resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. J Appl Phys, 1989, 65: 1293-1301.
  • 9Hong S I, Hill M A. Microstructure and conductivity of Cu-Nb microcomposites fabricated by the bundling and drawing process[J]. Scripta Materialia, 2001, 44: 2509-2515.
  • 10Heringhaus F, Schneider-Muntau H J, Gottstein G. Analytical modeling of the electrical conductivity of metal matrix composites: application to Ag-Cu and Cu-Nb[J]. Mater Sci Eng A, 2002, A347: 9-20.

共引文献73

同被引文献26

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部