期刊文献+

超Broer-Kaup-Kupershmidt族的双非线性化 被引量:3

Binary Nonlinearization of Super Broer-Kaup-Kupershmidt Hierarchy
下载PDF
导出
摘要 得出了超Broer-Kaup-Kupershmidt族Lax对的对称约束及其双非线性化.在得到的对称约束下,把超Broer-Kaup-Kupershmidt族的n阶流分解成定义在对应于动力变量x和t_n的超对称流形上的两种超有限维可积Hamilton系统.此外,显式给出了Liouville可积性所需的运动积分. The symmetry constraint and the binary nonlinearization of Lax pairs for super Broer-Kaup-Kupershmidt hierarchy are obtained.Under the obtained symmetry constraint, the n-th flow of the super Broer-Kaup-Kupershmidt hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems,defined over the super-symmetry manifold with the corresponding dynamical variables x and t_n.Furthermore,the integrals of motion required for Liouville integrability are explicitly given.
出处 《数学年刊(A辑)》 CSCD 北大核心 2012年第2期217-228,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.61072147) 河南省教育厅科学技术重点研究基金(No.12A110017) 商丘师范学院青年科研基金(No.2011QN12)资助的项目
关键词 对称约束 双非线性化 超Broer-Kaup-Kupershmidt族 超有限维可积Hamilton系统 Symmetry constraint Binary nonlinearization Super Broer-Kaup-Kupershmidt hierarchy Super finite-dimensional integrable Hamiltonian system
  • 相关文献

参考文献5

二级参考文献30

  • 1Z.C.Guo,X.Y.Zhu,R.D.Xu and X.W.YangFaculty of Material and Metallurgy Engineering, Kunming University of Science and Technology, Kunming650093, ChinaManuscript received 26 December 2001,in revised form 23 April 2002.CATHODIC PROCESS AND WEAR RESISTANCE OF ELECTRO-DEPOSITED RE-Ni-W-P-SiC COMPOSITE COATING[J].Acta Metallurgica Sinica(English Letters),2002,15(4):369-374. 被引量:16
  • 2MA WENXIU.BINARY NONLINEARIZATION FOR THE DIRAC SYSTEMS[J].Chinese Annals of Mathematics,Series B,1997,18(1):79-88. 被引量:8
  • 3P.G. Drazin and R.S. Johnson, Solitons, An Introduction, Cambridge University Press, Cambridge (1988).
  • 4B. Fussteiner, Coupling of Completely Integrable Systems: the Perturbation Bundle, in Applications of Analytic and Geometic Methods to Nonlinear Differential Equations, ed. P.A. Clarkson, Kluwer, Dordrecht (1993) p. 125.
  • 5W.X. Ma and B. Fuchssteiner, Chaos, Solitons and Fractals 7 (1996) 1227.
  • 6W.X. Ma, Phys. Lett. A 316 (2003) 72.
  • 7Y.F. Zhang and H.Q. Zhang, J. Math. Phys. 43(1) (2002) 466.
  • 8T.C. Xia, F.C. You, and D.Y. Chen, Chaos, Solitons and Fractals 27 (2006) 153.
  • 9T.C. Xia, F.C. You, and D.Y. Chen, Chaos, Solitons and Fractals 23 (2005) 1911.
  • 10T.C. Xia and F.C. You, Chaos, Solitons and Fractals 28 (2006) 938.

共引文献20

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部