期刊文献+

大量目标识别的光学相关与神经网络融合方法 被引量:3

Fusion of OCPR and neural network for recognition of large number targets
下载PDF
导出
摘要 本文基于光学相关与神经网络学习算法和编码聚类原理的融合 ,提出一种大数量目标的高效率分类识别方法 ,并以 67个字符 ,其中包括2 6个英文字母、1 0个数字和 31个省和直辖市的简称汉字的分类识别作为实例 ,给出详细的原理说明和结果。 An effective method of recognition of targets with large number is proposed based on fusion of optical correlation pattern recognition(OCPR) and neural network learning algorithm and clustering encoding.Detailed principle and recognition results on 67 characters,including 26 English capitals,10 digits and 31 Chinese characters which are the abbreviations of provinces and municipalities,as a case study,are presented in this paper.
出处 《激光杂志》 EI CAS CSCD 北大核心 2000年第3期44-46,共3页 Laser Journal
基金 国家自然科学基金资助的课题!(No.6 98770 0 5)
关键词 神经网络 光学相关模式识别 聚类编码 neural network,optical correlation pattern recognition(OCPR),learning algorithm,clustering encoding.
  • 相关文献

参考文献1

二级参考文献6

  • 1Chao T H,Appl Opt,1989年,28卷,2期,226页
  • 2Hsu Y N,Appl Opt,1982年,21卷,4016页
  • 3Zhang Y X,IJCNN’99
  • 4Tao Chunkan,J Opt Soc Am A,1995年,12期,2114页
  • 5Shen J Y,Opt Lett,1994年,19卷,24期,2158页
  • 6杨行峻,人工神经网络,1992年

共引文献3

同被引文献53

  • 1申金媛,韩应哲,常胜江,张延炘,罗琦,陈瑞良.非线性荧光光谱的神经网络分析及其应用[J].光学学报,2004,24(7):1000-1003. 被引量:15
  • 2F. Evangelisti, A. Baroncelli, P. Bonasoni et al.. Differential optical absorption spectrometer for measurement of tropospheric pollutants[J]. Appl. Opt., 1995, 34(15): 2737-2744.
  • 3N. Akozbek , M. Scalora , C. M. Bowden et al.. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air[J]. Opt. Commun. , 2001, 191(3) :353-362.
  • 4Simon Haykin. Neural Networks : A Comprehensive Foundation(second edition)[M]. Beijing, Tsinghua University Press, 2001.318-350.
  • 5Lindsay I. Smith. A Tutorial on Principal Components Analysis[R], 2002. 1-27.http: // kybele. psych. cornell, edu/~ edelman/Psych-465 Spring-2003/PCA-tutorial. pdf.
  • 6Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: an application to face detection[C]. In Proc. of CVPR '97, Purrto Rico, 1997. 1-8.
  • 7Bernd Heisele, Purdy Ho, Tomaso Poggio. Face Recognition with Support Vector Machines: Global versus component -based approach, http: //cbcl. mit. edu/projects/ebcl/publications/ps/iccv2001, pdf.
  • 8Corinna Cortes, Vladimir Vapnik. Support vector networks,machine learning[J]. 1995, 20(3) : 273-297.
  • 9V. Blanz, B. Scholkopf, H. Bulthoff et al.. Comparison of viewbased object recognition algorithms using realistic 3D models[C].Artificial Neural Networks ICANN '96, Springer Lecture Notes in computer Science, 1996, Berlin, 1112:251-256.
  • 10张延炘.人工神经网络及其光学实现[J].光电子.激光,1990,1(1):1-11. 被引量:2

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部