摘要
本文基于光学相关与神经网络学习算法和编码聚类原理的融合 ,提出一种大数量目标的高效率分类识别方法 ,并以 67个字符 ,其中包括2 6个英文字母、1 0个数字和 31个省和直辖市的简称汉字的分类识别作为实例 ,给出详细的原理说明和结果。
An effective method of recognition of targets with large number is proposed based on fusion of optical correlation pattern recognition(OCPR) and neural network learning algorithm and clustering encoding.Detailed principle and recognition results on 67 characters,including 26 English capitals,10 digits and 31 Chinese characters which are the abbreviations of provinces and municipalities,as a case study,are presented in this paper.
出处
《激光杂志》
EI
CAS
CSCD
北大核心
2000年第3期44-46,共3页
Laser Journal
基金
国家自然科学基金资助的课题!(No.6 98770 0 5)
关键词
神经网络
光学相关模式识别
聚类编码
neural network,optical correlation pattern recognition(OCPR),learning algorithm,clustering encoding.