期刊文献+

压缩感知在医学图像重建中的最新进展 被引量:19

New Advances of Compressed Sensing in Medical Image Reconstruction
下载PDF
导出
摘要 CS理论是一种新兴的信号获取与处理理论,通过减少信号重建所需的数据(少于奈奎斯特定理所要求的最小数目),来缩短信号采样时间,减少计算量,并在一定程度上保持原有图像的重建质量。由于该理论的这些显著优点,使得其在医学成像领域引起了广泛关注,取得了很大进展。本文介绍了压缩感知理论在医学成像中的发展历程和最新进展,详细介绍一种基于字典学习的新型压缩感知自适应重建算法,最后通过计算机模拟实验对该方法进行了初步验证。 Compressed Sensing(CS) is a new signaln acquisition and processing theory.It can decrease the signal sampling time and computation cost by reducing the required data for signal recovery while maintaining good image quality.The CS theory has drawn a lot of attention and made great progress in medical imaging since it was proposed.This paper introduces the history of CS theory and the recent improvement in medical imaging. Moreover,we focus on the dictionary learning algorithm which is a new CS-based adaptive reconstruction algorithm.At last,the result of simulation is presented to convince the algorithm.
出处 《CT理论与应用研究(中英文)》 2012年第1期133-147,共15页 Computerized Tomography Theory and Applications
基金 国家自然科学基金(10905030 60871084) 北京市自然科学基金资助项目
关键词 CS理论 医学成像 图像重建 字典学习 K-SVD compressed sensing medical imaging image construction dictionary learning K-SVD algorithm
  • 相关文献

参考文献9

二级参考文献236

  • 1张顺利,张定华,王凯,黄魁东,李卫斌.一种基于ART算法的快速图像重建技术[J].核电子学与探测技术,2007,27(3):479-483. 被引量:14
  • 2王旭,陈志强,熊华,张丽.联合代数重建算法中基于像素的投影计算方法[J].核电子学与探测技术,2005,25(6):785-788. 被引量:11
  • 3张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 4王宏钧,路宏年,傅健.代数重建技术中投影序列选择次序的研究[J].光学技术,2006,32(3):389-391. 被引量:17
  • 5DONOHO D. Compressed sensing[J]. IEEE Trans. Information Theory, 2006, 52(4): 1289-1306.
  • 6CANDES E. Compressive sampling[C]/[Proceedings of the International Congress of Mathematicians. Madrid, Spain: [s.n.], 2006:1433- 1452.
  • 7CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52(4): 489-509.
  • 8TROPP J, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Information Theory, 2007, 53(12): 4655-4666.
  • 9ZOU J, GILBERT A C, STRAUSS M J, et al. Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis[J]. Journal of Computational Physics, 2006, 211(2): 572 -595.
  • 10GAN Lu. Block compressed sensing of natural images[C]//Proceedings of the International Conference on Digital Signal Processing. [S.l.]: IEEE Press, 2007:403-406.

共引文献1000

同被引文献194

引证文献19

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部