期刊文献+

生理信号时间序列周期性和平稳性对近似熵和样本熵算法的影响分析 被引量:5

Influence analysis of physiological time-series periodicity and stability for approximate entropy and sample entropy
下载PDF
导出
摘要 目的提高近似熵和样本熵算法在评价生理信号时间序列非线性复杂度应用中的精度。方法首先生成生理信号时间序列数据库,通过对周期序列和叠加有周期成分的非线性序列的分析,研究序列周期性对熵测度算法的影响,并通过对心率变异性(heart rate variability,HRV)序列在去除非平稳趋势前后的对比分析,研究序列平稳性对熵测度算法的影响。结果在序列长度范围内,不同重复频率的周期序列熵测度不同,不同比重的周期成分叠加到非线性序列中引起序列熵测度的变化也不同。生理信号时间序列中大都存在非平稳成分,而非平稳成分会降低序列的复杂度,因此进行熵测度计算前首先要去除非平稳成分。结论周期性和非平稳成分显著影响生理信号时间序列的熵测度算法。 Objective To improve the accuracy of approximate entropy (ApEn) and sample entropy (SamEn) in evaluating the nonlinear complexity of physiological time-series. Methods We firstly constructed a database of physiological time-series. Secondly,we studied the influence of periodicity on entropy measure by analyzing the periodic sequences and nonlinear sequences added with different proportion of periodic components. Thirdly ,we investigated the influence of stability on entropy measure by comparing between the original heart rate variability (HRV)sequences and the HRV sequences after detrending. Results Within the limited length of time-series, the periodic sequences with different repetition rate had different calculated results of ApEn and SamEn, and different proportion of periodic components added to the nonlinear sequences could change the entropy measure. As physiological time-series were usually with some non-stationary components which reduced the the calculation of co A significantly affected mplexity of the sequences, the non-stationary components should to be eliminated before pEn and SamEn. Conclnsions The existent periodic and non-stationary components the entropy measures.
出处 《北京生物医学工程》 2012年第2期154-158,163,共6页 Beijing Biomedical Engineering
基金 国家863计划(2009AA02Z408) 中国博士后科学基金(20110491593)资助
关键词 近似熵 样本熵 生理信号时间序列 周期性 平稳性 approximate entropy sampleentropy physiological time-series periodicity stability
  • 相关文献

参考文献17

  • 1Liu CY;Liu CC;Li LP.Systolic and diastolic time interval variability analysis and their relations with heart rate variability[A]北京,20091-4.
  • 2Kobayashi T,Madokoro S,Wada Y. Human sleep EEG analysis using the correlation dimension[J].Clinical EEG,2001,(03):112-118.
  • 3Nieminen H,Takala EP. Evidence of deterministic chaos in the myoelectric signal[J].Electroencephalography and Clinical Neurophysiology,1996.49-58.
  • 4刘澄玉,杨静,刘常春,李丽萍,郎晓华,朱其刚.脉搏传播时间变异性谱分析的预处理方法研究[J].光电子.激光,2009,20(12):1690-1694. 被引量:3
  • 5李成金,赵勋杰.大鼠血压信号的分形性质研究[J].中国生物医学工程学报,1998,17(4):295-300. 被引量:1
  • 6Porta A,Guzzetti S,Furlan R. Complexity and nonlinearity in short-term heart period variability:comparison of methods based on local nonlinear prediction[J].IEEE Transactions on Biomedical Engineering,2007,(01):94-106.
  • 7Maria HS,Peter J. Multiple window correlation Analysis of HRV power and respiratory frequency[J].IEEE Transactions on Biomedical Engineering,2007,(10):1770-1779.
  • 8Pincus SM. Approximate entropy as a measure of system complexity[J].Proceedings of the National Academy of Sciences(USA),1991.2297-2301.doi:10.1073/pnas.88.6.2297.
  • 9Richman JS,Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy[J].American Journal of Physiology-Heart and Circulatory Physiology,2000,(06):2039-2049.
  • 10徐安,刘军,彭旗宇,黄国建.动态近似熵快速算法在心率变异研究中的应用[J].同济大学学报(自然科学版),2005,33(4):520-524. 被引量:8

二级参考文献27

共引文献34

同被引文献41

  • 1蔡启明.以动态心率为指标的体力疲劳的评价方法研究[J].人类工效学,1999,5(1):27-29. 被引量:24
  • 2邱曼,王生,刘铁民.呼吸防护用品的人机工效学问题分析[J].中国安全科学学报,2007,17(2):139-143. 被引量:15
  • 3李后强 等.分形与分维[M].成都:四川教育出版社,1990..
  • 4Kantelhardt JW, Zshiegner SA, Koscielny-Bunde E, et al. Muhifractaldetrended fluctuation of analysis of nonstationary time series[ J]. Physica A ,2002,316:87-114.
  • 5Nicolas B. Multifractal Feature Vectors for Brain-Computer Interfaces Brodu N. Proc Int Jt Conf Neural Networks [ C ]. Hongkong, China : Institute of Electrical and Electronics Engineers Inc, 2008 : 2883-2890.
  • 6Figliola,Serrano, Rostas, et al. Study of EEG Brain Maturation Signals with MuhifractalDetrended Fluctuation Analysis. AIP Conference Proceedings, 2007,190 - 195.
  • 7Dick OE, Svyatogor IA. Potentialities of the wavelet and multifractal techniques to evaluate changes in the functional state of the human brain[J]. Neurocomputing,2012 ,82 :207-215.
  • 8Popivanov D, jivkova S, Stomonyakov V, et al. Effect of independent component analysis on muhifractality of EEG during visual-motor task [ J ]. Signal Processing,2005,85 : 2112-2123.
  • 9Ivanov PCh,Amaral LAN, Goldberger AL, et al. From 1/f noise to muhifractal cascades in heartbeat dynamics [ J]. Chaos,2001, 11:641-652.
  • 10Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease [ J]. Neurobiol Aging,2002,23:23-26.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部