摘要
目的通过还原-氧化方法使作为前躯体的Fe3O4纳米颗粒具有Fe-Fe3O4核壳结构,以作为磁靶向药物载体。方法在管式炉中以H2还原Fe3O4纳米颗粒后,利用压差作用下进入的少量空气缓慢氧化还原后物质,以制备符合预期要求的Fe-Fe3O4核壳结构纳米粒子,并分析产物的X射线衍射(X-ray diffraction,XRD)、透射电子显微镜(transmission electron microscopy,TEM)和振动样品磁强计(vibrating sample magnetometer,VSM)表征结果。结果通过还原-氧化法制备的Fe-Fe3O4核壳结构纳米粒子,形状近似球形,粒径主要分布在60~100 nm,比饱和磁化强度达108emu/g,比Fe3O4纳米颗粒高30emu/g,且稳定性良好。结论还原-氧化法制备的Fe-Fe3O4核壳结构纳米颗粒比前躯体磁性强,并具有较高的化学稳定性和生物相容性。
Objective Through the procedure of reduction and oxidation, Fe3O4 nanoparticles, as the precursor,were changed into Fe/Fe3O4 core-shell nanoparticles to produce magnetic materials for targeting drug carrier. Methods Fe3O4 nanoparticles were first reduced by H2 in a tube furnace and then the remaining materials were slowly oxidized in a thin air atmosphere caused by the pressure difference inside and outside the tube furnace. The products were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) Results The as-synthesized particles were almost spherical, the particle diameter ranged from 60nm to 100 nm. The special saturation magnetization was 108emu/ g,30emu/g higher than the precursor. Conclusions The Fe/Fe3O4 core-shell structure shows higher special saturation magnetization than the precursor as well as greater chemical stability and biocompatibility.
出处
《北京生物医学工程》
2012年第2期170-173,195,共5页
Beijing Biomedical Engineering
基金
国家863子课题合作项目(2007AA021805)
江苏省高校自然科学研究计划项目(08KJB310006)资助