期刊文献+

改进的无迹粒子滤波在组合导航中的应用研究 被引量:2

Improved Unscented Particle Filtering for Integrated Navigation System
下载PDF
导出
摘要 粒子滤波算法是一种适用于非线性非正态约束的统计滤波算法.针对粒子滤波存在退化现象,从围绕增加粒子的多样性和重要性分布函数的选择出发,提出了一种改进的无迹粒子滤波算法.该算法是利用无迹卡尔曼滤波产生的近似高斯分布作为重要性密度函数,在每次迭代中,结合马尔科夫链蒙特卡洛使粒子能够移动到不同地方,从而可以避免贫化现象.将这种算法应用到GPS/DR组合导航系统中,仿真结果证明了采用改进的无迹粒子滤波方法能达到很好的跟踪效果. Particle filter is statistical filter arithmetic based on analog used in the non linearity and non normal restriction.There is the degenerate problem in particle filter.A improved particle filter method is given according to increasing particle diversity and choosing important distribution function.The approximate Gaussian distribution generated Unscented Kalman filter is used important distribution function in the method.The particle is moved different place using MCMC in each iteration to avoid degenerate problem.The method is used in GPS/DR integrated navigation system.The result of simulation has shown that the method have better tracking capability using improved UPF.
作者 张洋溢 王忠
出处 《武汉理工大学学报(交通科学与工程版)》 2012年第2期415-418,422,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 航空科学基金项目资助(批准号:20100119004)
关键词 粒子滤波 改进的UPF GPS/DR 信息融合 SIS particle filtering improved UPF GPS/DR information fusion SIS
  • 相关文献

参考文献10

  • 1Mintsis G,Basbas S,Papaioannou P,et al.Applica-tions of GPS technology in the land transportationsystem[J].Elisevire European Journal of OperationalResearch,2004,152:399-409.
  • 2周建中,王树宗.一种基于粒子滤波的分布式跟踪算法[J].武汉理工大学学报(交通科学与工程版),2010,34(5):924-927. 被引量:2
  • 3Song Shenmin,Wei Xiqing.Unscented particle filterwith estimation windows in submarine tracking[J].Intelligent Control and Automation,2010(2):137-140.
  • 4Bucy R S,Renne K D.Digital synthesis of nonlinearfilter[J].Automatica,1971,7(3):287-289.
  • 5Cappe O,Godsill S J,Moulines E.An overview ofexisting methods and recent advances in sequentialmonte carlo[J].IEEE Proceedings,2007(5):899-924.
  • 6Guo D,Wang X,Chen R.New sequential montecarlo methods for nonlinear dynamic systems[J].Statistics and Computing.2005(2):135-147.
  • 7Cheng Q,Bondon P.A new unscented particle filter[C]∥Acoustics,Speech and Signal Processing,2008:3 417-3 420.
  • 8王婷婷,郭圣权.粒子滤波算法的综述[J].仪表技术,2009(6):64-66. 被引量:10
  • 9向礼,刘雨,苏宝库.一种新的粒子滤波算法在INS/GPS组合导航系统中的应用[J].控制理论与应用,2010,27(2):159-163. 被引量:13
  • 10鉴福升,徐跃民,阴泽杰.改进的多模型粒子滤波机动目标跟踪算法[J].控制理论与应用,2010,27(8):1012-1016. 被引量:11

二级参考文献22

  • 1莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 2杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 3Haykin S Kalman. Filtering and neural networks [ M ]. New York: John Wiley and Sons,2001.
  • 4Doucet A, Godsill S. On sequential Monte Carlo sampling methods for Bayesian fihering [ R ]. Cambridge: University of Cambridge,1998 : 1 - 36.
  • 5Liu J S, Chen R. Sequential Monte Carlo methods for dynamical systems [ J ]. J of the American Statistical Association, 1998,93 ( 5 ) : 1032 - 1044.
  • 6GUSTAFSSON F, GUNNARSSON F, BERGMAN N, et al. Particle filters for positioning, navigation and tracking [ J ]. IEEE Transaction on Signal Processing,2002,50 ( 2 ) :425 - 437.
  • 7KADIRKAMANATHAN V, LI P, JAWARD M H, et al, Particle ,filtering-based fault detection in non-linear stochastic systems [ J ]. International Journal of Systems Science, 2002,33 (4) : 259 -265.
  • 8石章松,周丰,等.目标跟踪与数据融合理论及其应用[M].武汉:海军工程大学,2007:96-100.
  • 9GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proceed- ings on Radar and Signal Processing, 1993, 140(2): 107 - 113.
  • 10GSTAFSSON E Particle filters for positioning, navigation and tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 425 - 437.

共引文献32

同被引文献9

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部