期刊文献+

Sobolev方程的全离散有限体积元格式及数值模拟 被引量:3

A FULLY DISCRETE FINITE VOLUME ELEMENT FORMULATION FOR SOBOLEV EQUATION AND NUMERICAL SIMULATIONS
原文传递
导出
摘要 本文研究二维Sobolev方程的有限体积元方法,给出一种全离散化有限体积元格式及其有限体积元解的误差估计,并用数值例子说明数值计算的结果与理论结果是相吻合的,进一步说明了有限体积元方法比其他数值方法更优越. In this paper, a finite volume element method for 2D Sobolev equation is studied and a fully discrete finite volume element formulation and error estimates are derived. Some nu- merical examples illustrate the fact that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the finite volume element method is more advantageous than others for finding numerical solutions of Sobolev equation.
出处 《计算数学》 CSCD 北大核心 2012年第2期163-172,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金(批准号:11061009和11061021) 河北省自然科学基金(批准号:A2010001663) 贵州省科技计划项目(批准号:黔科合J字[2011]2367) 内蒙古自治区高等学校研究项目(批准号:NJ 10006)资助
关键词 SOBOLEV方程 有限体积元格式 全离散格式 误差估计 Sobolev equation finite volume element formulation fully discrete formulation error estimate
  • 相关文献

参考文献18

  • 1Barenblett G I,Zheltov I P,Kochian I N. Basic concepts in the theory of homogeneous liquids in fissured rocks[J].Journal of Applied Mathematics and Mechanics,1990,(05):12861303.doi:10.1016/j.pediatrneurol.2008.09.002.
  • 2施德明.非线性湿气迁移方程的初边值问题[J].应用数学学报,1990,13(1):31-38. 被引量:51
  • 3Ting T W. A cooling process according to two-temperature theory of heat conduction[J].Journal of Mathematical Analysis and Applications,1974,(01):23-31.
  • 4Cai Z,McCormick S. On the accuracy of the finite volume element method for diffusion equations on composite grid[J].SIAM Journal on Numerical Analysis,1990,(03):636-655.
  • 5Süli E. Convergence of finite volume schemes for Poisson's equation on nonuniform meshes[J].SIAM Journal on Numerical Analysis,1991,(05):1419-1430.
  • 6Jones W P,Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J].Journal of Computational Physics,2000,(01):45-68.doi:10.1006/jcph.2000.6595.
  • 7Bank R E,Rose D J. Some error estimates for the box methods[J].SIAM Journal on Numerical Analysis,1987,(04):777-787.doi:10.1137/0724050.
  • 8Li R H,Chen Z Y,Wu W. Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods[A].Marcel Dekker Inc.:New York,2000.
  • 9Blanc P,Eymerd R,Herbin R. A error estimate for finite volume methods for the Stokes equations on equilateral triangular meshes[J].Numerical Methods For Partial Differential Equations,2004,(06):907-918.doi:10.1002/num.20020.
  • 10Li J,Chen Z X. A new stabilized finite volume method for the stationary Stokes equations[J].Advances in Computational Mathematics,2009,(02):141-152.doi:10.1007/s10444-007-9060-5.

二级参考文献12

  • 1施德明,数学物理学报,1988年,8期,451页
  • 2V. Thomee and N.Y. Zhang, Error estimates for Semidiscrete finite element methods for parabolic integro-differential equations, reported at the Chicago meeting for Jim Douglas,Septinger (1987).
  • 3D.N. Amold, J. Douglas, Jr and V. Thomee, Superconvegence of a finite element approximation to the solution of a sobolev equation in a single space volriable, Math. Comput.,36 (1981), 53-63.
  • 4G.I. Barenblatt, I.P. Zheltov and I.N. Kochian, Basic concepts in the theory of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24(1960), 1286-1303.
  • 5Ciarlet P. G.: The Finite Element for Elliptic Problem, North-Holland, 1978.
  • 6Jing Gong and Qian Li, Lp and W^1,p Error Estimates for First Order GDM on Onedimensional Elliptic and Parabolic Problems, The Korea Society for Industrial and Applied Mathematics J. KSIAM, 4:2(2000), 41-57.
  • 7R.H. Li and Z.Y. Chen, The generalized difference method for differential equation (Chinese). JiLin Univ. Publ. House, ChangChun, 1994.
  • 8Q. Li, Generalezed difference method, Lecture Note of the Twelfth KAIST Mathe Matical Workshop, Taejon, Korea, 1997.
  • 9朱启定 林群.有限元超收敛理论[M].湘潭大学数学系,1986年4月..
  • 10R.K. Miller, An intego-difference equations for rigid heat conductions with menory, J.Matt. Anal. Appl., 66(1998), 313-332.

共引文献57

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部