期刊文献+

120°模具室温ECAP制备工业纯钛的热压缩变形行为 被引量:6

Hot Compression Deformation Behavior of as-ECAPed CP-Ti at Room Temperature with 120° Die
原文传递
导出
摘要 在Gleeble-1500热模拟机上对室温120°模具等径弯曲通道变形(ECAP)制备的平均晶粒尺寸为200nm的工业纯钛(CP-Ti)进行等温变速压缩实验,研究超细晶(UFG)工业纯钛在变形温度为298~673K和应变速率为10-3~100s-1条件下的流变行为。利用透射电子显微镜分析超细晶工业纯钛在不同变形条件下的组织演化规律。结果表明:流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随温度的升高而减小,随应变速率的增大而增大;随变形温度的升高和应变速率的降低,应变速率敏感性指数m增加,晶粒粗化,亚晶尺寸增大,再结晶晶粒数量逐渐增加;超细晶工业纯钛热压缩变形的主要软化机制随变形温度的升高和应变速率的降低由动态回复逐步转变为动态再结晶。 Hot compression deformation behavior of Ultrafine-grained(UFG) commercially pure(CP) Ti with the average grain size of 200 nm was studied by thermal simulation test at the deformation temperature of 298-673 K and the strain rate of 10-3-100 s-1 on the Gleeble-1500 thermal-mechanical simulator.UFG CP-Ti was produced by ECAP up to 8 passes with a die of Φ=120° using route Bc at room temperature.The microstructural evolution of UFG CP-Ti was investigated by transmission electron microscopy.The results show that the flow stress increases with increasing of strain and tends to be constant after a peak value.The peak stress increases with increasing of strain rate and decreases with increasing of deformation temperature.Strain rate sensitivity value m of the UFG CP-Ti is found to increase with increasing of temperature and decreasing of strain rate.And the grains in the deformed samples are coarsened and the size of subgrains increases;the number of fine grains in grain boundaries also increases,indicating that the main softening mechanism of the alloy during hot compression deformation is attributed to the transformation from dynamic recovery to dynamic recrystallization.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第4期667-671,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50874086) 高等学校博士学科点专项科研基金(20116020110012) 陕西省自然科学基金(2010JM6010)
关键词 ECAP工业纯钛 热压缩变形 流变应力 应变速率敏感性 动态再结晶 as-ECAPed CP-Ti hot compression deformation flow stress strain rate sensitivity recrystallization
  • 相关文献

参考文献21

  • 1Torre F D.Acta Mater[J],2004,52(16):4819.
  • 2Valiev R Z.J Mater Res[J],2002,17:5.
  • 3H ppel H W.Adv Eng Mater[J],2004,6(9):781.
  • 4Ko Y G.Mater Sci Eng A[J],2007,449-451:756.
  • 5Latysh V.Current Applied Physics[J],2006,6(2):262.
  • 6Zhernakov V S.Scripta Mater[J],2001,44(8-9):1771.
  • 7Stolyarov V V.Mater Sci Eng A[J],2001,303(1-2):82.
  • 8Raab G.Mater Sci Eng A[J],2004,387-389:674.
  • 9Zhao X C.Scripta Mater[J],2008,59(5):542.
  • 10Zhao X C.Mater Sci Eng A[J],2010,527(23):6335.

二级参考文献3

共引文献16

同被引文献57

  • 1周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术,2005,24(2):212-216. 被引量:46
  • 2马秋林,张莉,徐宏,王志文.工业纯钛TA2室温蠕变第1阶段特性研究[J].稀有金属材料与工程,2007,36(1):11-14. 被引量:18
  • 3Imam M A, Gilmore C M. Metall Mater Trans A[J], 1979, 10(4): 419.
  • 4Neeraj T, Hou D H, Daehn G Set al. Acta Mater[J], 2000, 48: 1225.
  • 5Paulino G H, Carpenter R D, Liang W Wet al. Eng Fract Mech[J], 2001, 68:1417.
  • 6Peng J, Zhou C Y, Dai Q et al. Mater Design[J], 2013, 50:968.
  • 7Tanaka H, Yamada T, Sato E et al. Scripta Mater[J], 2006, 54(1): 121.
  • 8Brust F W, Leis B N. IntJFracture[J], 1992, 54:45.
  • 9GB/T 228-2002. Metallic Materials-Tensile Testing at AmbientTemperature(金属材料室温拉伸试验方法)[S].2002.
  • 10GB/T 2039-1997. Metallic Materials-Creep and Stress-Rupture Test in Tension(金属拉伸蠕变及持久试验方法)[S].1997.

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部