期刊文献+

基于空间关系特征的未知恶意代码自动检测技术研究 被引量:5

Research on Unknown Malicious Code Automatic Detection Based on Space Relevance Features
下载PDF
导出
摘要 提出基于未知恶意代码样本空间关系特征的自动检测技术.针对量化的恶意代码样本字符空间的向量特征,基于区域生长的智能分块算法,划分恶意代码样本空间关系区域;根据区域分别计算恶意代码样本的字符矩、信息熵和相关系数等空间关系特征,分别提取特征向量,并归一化处理;通过分析恶意代码样本特征的共性,建立空间关系特征向量索引;采用综合多特征的相似优先匹配方法检测未知恶意代码,多个空间关系距离加权作为判别依据,提高检测的准确率.实验表明,提出的自动检测方法能够自动快速地匹配出未知恶意代码的样本,准确程度高,而且能够确定未知恶意代码的类型. Unknown malicious code sample automatic detection scheme is proposed based on space relevance features. According to the characteristics quantitative vectors of character space, malicious code samples are divided into space relevance blocks based on the intelligence region growing segmentation algorithm. In each block of malicious code sample, the spatial relations of character moment, information entropy, and correlation coefficient are calculated, the feature vectors are extracted, and the normalization processes are manipulated. Then, the reference of spatial relational feature vectors have been set up through the analysis of general spatial properties of malicious code samples. In order to match the previous unknown malicious codes, the similarity preferred matching algorithm which is based on comprehensive analysis of multiple features is adopted. In addition, the spatial relational distances are weighted and considered together, so as to improve the accuracy of the search work. Experimental flow graph is designed, spatial relational feature vectors properties of multiple malicious code sample blocks are portrayed, and the comparisons of malicious code detection accuracy rate between single feature match method and comprehensive multiple features match method are drawn. Experiments result analyses show that the proposed automatic detection scheme can match the previous unknown malicious code with high accurate degree and can determine the corresponding subordinate type of malicious code samples.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第5期949-957,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60973139 60773041) 江苏省自然科学基金项目(BK2008451) 国家博士后基金项目(20090451240 20090451241 20100471353 20100471355 20100471356) 江苏高校科技创新计划项目(CX09B-153Z CX10B-260Z CX10B-261Z CX10B-262Z CX10B-263Z) 江苏省六大高峰人才项目(2008118) 江苏省计算机信息处理技术重点实验室基金项目(2010)
关键词 网络安全 恶意代码 智能分块 空间关系特征 相似性匹配 network security malicious code intelligence segmentation space relevance feature similarity match
  • 相关文献

同被引文献41

  • 1赵刚,宫义山,王大力.考虑成本与要素关系的信息安全风险分析模型[J].沈阳工业大学学报,2015,37(1):69-74. 被引量:8
  • 2张华伟,王明文,甘丽新.基于随机森林的文本分类模型研究[J].山东大学学报(理学版),2006,41(3):5-9. 被引量:59
  • 3360互联网安全中心.2012年中国互联网安全报告[EB/OL].北京:360互联网安全中心,2013(2013-02 - 25 ) [ 2014 - 10 - 30 ]. http://awuvsvkkjf. 15. yunpan, cn/lk/QUPZKyLbVTBTH.
  • 4Symantec. 2014 internet security threat report [ EB/ OL]. New York: Symantec, 2014 ( 2014 - 04 - 01 ) [ 2014 - 10 - 30 ]. http ://www. symantec, com/secu- fity_response/publications/threatreport, jsp? om ext cid = biz_socmed_twitter_facebook marketwire_linke- din_2013 Apr_worldwide_ISTR18.
  • 5国家互联网应急中心.2013年中国互联网网络安全报告[EB/OL].北京:国家互联网应急中心,2014(2014 - 06 - 03) [2014 - 10 - 30]. http://www. cert. org. cn/publish/rnain/upload/File/2o13% 2oAnnual% 2oRerxort% 20. pdf.
  • 6Islam R, Tian R H, Batten L M, et al. Classification of malware based on integrated static and dynamic fea- tures[J]. Journal of Network and Computer Applica- tions,2013,36(2) :646 - 656.
  • 7Shahzad F, Shahzad M, Farooq M. In-execution dy- namic malware analysis and detection by mining infor- mation in process control blocks of Linux OS [ J ]. In- formation Sciences,2013,231:45 - 63.
  • 8360互联网安全中心.2012年中国互联网安全报告[EB/OL].北京:360互联网安全中心,2013(2013-02-25)[2015-04-30].http://awuvsvkkjf.l5.yunpan.cn/lk/QUPZKyLbVTBTH.
  • 9Ding Y X,Yuan X B,Tang K,et al.A fast malware detection algorithm based on objective-oriented associa-tion mining[J].Computers &Security,2013,39:315-324.
  • 10Silvio C,Yang X,Zhou W L.Control flow-based malware variant detection[J].IEEE Transactions on Dependable and Secure Computing,2014,11(4):304-317.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部