期刊文献+

基于维持种群多样性的测试数据生成算法的研究 被引量:2

Automated Test Data Generation Using Evolutionary Algorithm Based on Maintaining Population Diversity
下载PDF
导出
摘要 测试数据自动化生成技术尝试寻找一个相对小的数据集来满足测试充分性标准,以降低软件测试的成本,提高测试效率.当测试项的数据集大小超过其上限时,算法会使用淘汰算法把差异性较小的测试数据从集合中淘汰掉,把差异性较大的测试数据留下来,以维持种群的多样性.针对此问题,提出一种基于维持种群多样性的演化算法来求解测试数据集,算法利用启发信息迭代地选择一个条件?判定语句作为子目标,通过演化算法生成数据以覆盖目标.在此算法框架内,利用一种新的计算评估值的方法计算数据与测试项的距离信息;以及利用归一的曼哈顿距离计算测试数据差异性,通过淘汰策略把差异性较小的测试数据淘汰掉.在实验中,对14个计算机科学基础算法的基准函数进行了测试,并与现有文献中的测试数据生成方法进行对比,验证了算法有效提高了条件?判定覆盖率,并且减少了测试数据的生成数量,提高了测试性能. The automatic test data generation technology tries to find a relatively small set of test data to satisfy adequacy criterion, in order to reduce testing cost and increase testing efficiency. In this paper, an innovative test data generation algorithm based on maintaining population diversity is proposed, which satisfies condition/decision coverage criterion. This algorithm is based on an extended branch coverage table. Normalized Manhattan distance is employed to calculate the diversity between test data and eliminate the data with lower diversity, to maintain population diversity. Meanwhile, a new approach is introduced to evaluate the fitness values of test data. Then a greedy algorithm is used to reduce the number of test cases. Finally, this paper presents some experiments over a large benchmark composed of fourteen programs that include fundamental and practical aspects of computer science.
作者 王建民 蔡媛
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第5期1039-1048,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61073132 60776796) 广东省自然科学基金项目(9151027501000035) 广东省科技计划项目(2009B010800017) 中山大学基本科研业务费专项基金项目(101gpy33)
关键词 结构化测试 测试数据自动化生成 测试用例 条件/判定覆盖 元启发式搜索技术 structural testing automatic test data generation test case condition/decision coverage meta-heuristic search techniques
  • 相关文献

参考文献22

  • 1Chen H Y. Taccle:A methodology for object-oriented software testing at the class and cluster levels[J].ACM Transactions on Software Engineering and Methodology,2001,(01):56-109.doi:10.1145/366378.366380.
  • 2Michael C C. Generating software test data by evolution[J].IEEE Transactions on Software Engineering,2001,(12):1085-1110.doi:10.1109/32.988709.
  • 3Bird D L,Munoz C U. Automatic generation of random self-checking test cases[J].IBM Journal of Research and Development,1983,(03):229-245.doi:10.1147/sj.223.0229.
  • 4王志言,刘椿年.区间算术在软件测试中的应用[J].软件学报,1998,9(6):438-443. 被引量:19
  • 5Clarke L A. A system to generate test data and symbolically execute programs[J].IEEE Transactions on Software Engineering,1976,(03):215-222.doi:10.1109/TSE.1976.233817.
  • 6Ramamoorthy C V. Automated generation of program test data[J].IEEE Transactions on Software Engineering,1976,(04):293-300.doi:10.1109/TSE.1976.233835.
  • 7Miller W,Spooner D L. Automatic generation of floatingpoint test data[J].IEEE Transactions on Software Engineering,1976,(03):223-226.doi:10.1109/TSE.1976.233818.
  • 8Wegener J. Testing real-time systems using genetic algorithms[J].Software Quality Journal,1997,(02):127-135.doi:10.1023/A:1018551716639.
  • 9Korel B. Automated software test data generation[J].IEEE Transactions on Software Engineering,1990,(08):870-879.doi:10.1109/32.57624.
  • 10Jones B F. Automatic structural testing using genetic algorithms[J].Software Engineering Journal,1996,(05):299-306.doi:10.1049/sej.1996.0040.

二级参考文献24

  • 1刘椿年,软件学报,1996年,7卷,专刊,303页
  • 2Huang J C,Comput Surv,1995年,7卷,3期,113页
  • 3Shi ZZ.Knowledge Discovery.Beijing:Tsinghua University Press,2002.266-286.
  • 4Berndt D,Fisher J,Joshson L.Breeding software test cases with genetic algorithms.In:Sprague RH,ed.Proc.of the Int'l Conf.on System Sciences.Big Island:IEEE Computer Society Press,2003.338a.
  • 5Khor S,Grogono P.Using a genetic algorithm and formal concept analysis to generate branch coverage test data automatically.In:Grünbacher P,Wiels V,Stirewalt K,eds.Proc.of the Int'l Conf.on Automated Software Engineering.Linz:IEEE Computer Society Press,2004.346-349.
  • 6Berndt DJ,Watkins A.Investigating the performance of genetic algorithm-based software test case generation.In:Ramamoorthy CV,ed.Proc.of the Int'l Symp.on High Assurance Systems Engineering.Tampa Florida:IEEE Computer Society Press,2004.261-262.
  • 7Kargupta H.The gene expression messy genetic algorithm.In:Proc.of the Int'l Conf.on Evolutionary Computation.Nagoya:IEEE Computer Society Press,1996.814-819.
  • 8Zaritsky A,Sipper M.The preservation of favoured building blocks in the struggle for fitness:The puzzle algorithm.IEEE Trans.on Evolutionary Computation,2004,8(5):443-455.
  • 9Deason WH,Brown DB,Chang KH,Cross II JH.A rule-based software test data generator.IEEE Trans.on Knowledge and Data Engineering,1991,3(1):108-117.
  • 10Harman M,Hu L,Hieros R,Wegener J,Sthamer H,Baresel A,Roper M.Testability transformation.IEEE Trans.on Software Engineering,2004,30(1):3-16.

共引文献30

同被引文献22

  • 1McMinn P. Search-based software test data generation: a survey[J]. Software Testing, Verification and Reliability, 2004,14(2): 105-156.
  • 2Aleb N, Kechid S. Automatic test data generation using a geneticalgorithm[C]// Proceedings of the 13th International Conferenceon Computational Science and its Applications. Heidelberg:Springer, 2013: 574-586.
  • 3Sun J H, Jiang S J. An approach to automatic generating testdata for multi-path coverage by genetic algorithm[C] //Proceedingsof the 6th International Conference on Natural Computation.Los Alamitos: IEEE Computer Society Press, 2010:1533-1536.
  • 4Maragathavalli P, Kanmani S, Kirubakar J S, et al. Automaticprogram instrumentation in generation of test data using geneticalgorithm for multiple paths coverage[C] //Proceedings ofInternational Conference on Advances in Engineering, Scienceand Management. Los Alamitos: IEEE Computer Society Press,2012: 349-353.
  • 5Ahmed M A, Hermadi I. GA-based multiple paths test data generator[J]. Computers and Operations Research, 2008, 35(10):3107-3124.
  • 6Poli R, Kennedy J, Blackwell T. Particle swarm optimization[J].Swarm Intelligence, 2007, 1(1): 33-57.
  • 7Cao Y, Hu C H, Li L M. Search-based multi-paths test datageneration for structure-oriented testing[C] //Proceedings of the1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation.New York: ACM Press, 2009: 25-32.
  • 8Ferguson R, Korel B. The chaining approach for software testdata generation[J]. ACM Transactions on Software Engineeringand Methodology, 1996, 5(1): 63-86.
  • 9Tracey N, Clark J, Mander K, et al. An automated frameworkfor structural test-data generation[C] //Proceedings of the 13thIEEE International Conference on Automated Software Engineering.Los Alamitos: IEEE Computer Society Press, 1998:285-288.
  • 10Lobo F J, Lima C F, Michalewicz Z. Parameter setting in evolutionaryalgorithms[M]. Heidelberg: Springer, 2007: 47-76.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部