期刊文献+

一种基于数据聚类的鲁棒SIFT特征匹配方法 被引量:6

A Data-Clustering Based Robust SIFT Feature Matching Method
下载PDF
导出
摘要 针对噪声敏感造成的SIFT特征匹配鲁棒性低问题,提出一种基于数据聚类的两阶段特征匹配方法.在满足特征匹配几何距离最邻近本质要求下扩展了kd数据结构,使其不但能够完成算术平均化匹配特征离线聚类,而且能够实现第1阶段聚类特征在线匹配.在此基础上,给出一种概率最优投票策略选择关键图像进行第2阶段匹配,最后合并两阶段属于关键图像的所有匹配特征对.实验结果表明,对于大量存在重叠关系的图像集合,该方法能够有效减少重复特征数量,降低噪声信息对特征匹配的干扰,极大地提高特征匹配的鲁棒性. We present a data clustering method for robust SIFT matching. Our matching process contains an offline module to cluster features from a group of reference images and an online module to match them to the live images in order to enhance matching robustness. The main contribution lies in constructing a composite k-d data structure which can be used not only to cluster features but also to implement features matching. Then an optimal keyframe selection method is proposed using our composite k-d tree, which can not only put the matching process forward but also give us a way to employ a cascading feature matching strategy to combine matching results of composite k-d tree and keyframe. Experimental results show that our method dramatically enhances matching robustness.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第5期1123-1129,共7页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2009AA012103)
关键词 聚类特征 鲁棒匹配 合成k-d树 SIFT 投票策略 clustering feature robust matching composite/e-d tree SIFT voting scheme
  • 相关文献

参考文献14

  • 1Friedman J H,Bentley J L,Finkel R A. An algorithm for finding best matches in logarithmic expected time[J].ACM Trans on Mathemtical Software,1977,(03):209-226.
  • 2Berg D,Krefeld M V,Overmars M. Computational Geometry,Algorithms and Applications[M].Berlin:Springer-Verlag,2000.
  • 3Beis J,Lowe D G. Shape indexing using approximate nearest neighbour search in high-dimensional spaces[A].Piscataway,NJ:IEEE,1997.1000-1006.
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,(02):91-110.doi:10.1023/B:VISI.0000029664.99615.94.
  • 5Mikolajczyk K,Schmid C. Scale & affine invariant interest point detectors[J].International Journal of Computer Vision,2004,(01):63-86.doi:10.1023/B:VISI.0000027790.02288.f2.
  • 6Mikolajczyk K,Schmid C. A performance evaluation of local descriptors[J].IEEE Trans on Pattern Analysis & Machine Intelligence,2005,(10):1615-1630.doi:10.1109/TPAMI.2005.188.
  • 7Mikolajczyk K,Matas J. Improving descriptors for fast tree matching by optimal linear projection[A].Piscataway,NJ:IEEE,2007.1-8.
  • 8Sivic J,Zisserman A. Video google: A text retrieval approach to object matching in videos[A].Piscataway,NJ:IEEE,2003.1470-1480.
  • 9Nister D,Stewenius H. Scalable recognition with a vocabulary tree[A].Piscataway,NJ:IEEE,2006.2161-2168.
  • 10Schindler G,Brown M,Szeliski R. City-scale location recognition[A].Piscataway,N J:IEEE,2007.1-7.

同被引文献74

  • 1陈靖,王涌天,郭俊伟,刘伟,林精敦,薛康,刘越,丁刚毅.基于特征识别的增强现实跟踪定位算法[J].中国科学:信息科学,2010,40(11):1437-1449. 被引量:10
  • 2王涌天,林倞,刘越,郑伟.亦真亦幻的户外增强现实系统——圆明园的数字重建[J].中国科学基金,2006,20(2):76-80. 被引量:44
  • 3唐涛,粟毅,陈涛,李智勇.一种新的图像局部仿射不变特征提取方法[J].计算机仿真,2007,24(7):229-234. 被引量:14
  • 4Dai Xiao-long, Khorram So A feature-based image registration algorithm using improved chain-code representation combined with invariant moment[J]. IEEE Transaction on Geoscienee and Remote Sensing, 1999,37(5) : 2351-2362.
  • 5Tuytelaars T, Gool L V. Wide baseline stereo matching based on local, affinely invariant regions [C] // Proceedings of the 11 th British Machine Vision Conference. Bristol, UK: II.ES Central, 2000:412-425.
  • 6Matas J,Chum O,et al. Robust wide-baseline stereo from maxi- mally stable extremal regions[C] // Proceedings of the British Machine Vision Conference. Cardiff, UK, 2002 : 384-393.
  • 7Lowe D G. Distinctive image features from seale-invariant key- points [J]. International Journal of Computer Vision, 2004, 60 (2):91-110.
  • 8Mikolajezyk K, Schmid C. Scale & Affine Invariant Interest Point Detectors[J]. International Journal of Computer Vision, 2004,60(1) : 63-68.
  • 9Yasein M, Agathoklis P. A feature-based image registration technique for images of different scale[C]///IEEE International Symposium on Circuits and Systems. May 2008:3558-3561.
  • 10Daubechies I. Ten Lectures on Wavelets[M]. Fourth Printing, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992.

引证文献6

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部