期刊文献+

SIFT特征分布式并行提取算法 被引量:6

A Distributed Parallel Algorithm for SIFT Feature Extraction
下载PDF
导出
摘要 SIFT(scale invariant feature transform)特征在物体检测和识别、图像配准与融合、纹理识别、场景分类、人脸检测、图像检索、三维重建、数字水印、影像追踪等领域具有广泛应用,但存在计算量大、消耗时间长的缺点.基于消息传递机制,采用数据并行策略,提出了在PC机群或COW(cluster ofworkstation)上提取图像SIFT特征的分布式并行算法(DP-SIFT算法):根据特征空间-高斯尺度金字塔的特点提出了高度宽度受限的数据块划分算法,设计了数据分配和特征调整方法;研究了数据块划分和数据发送方法对通信时间的影响,提出了基于消息传递机制的并行图像处理中数据块划分与数据发送方式协同对通信优化的策略;实验结果表明DP-SIFT算法具有良好的加速性能和较高的处理器利用效率,千兆以太网连接32核的PC机群系统图像规模为1024×768时,加速比和处理器效率分别可以达到20和0.6;图像规模为2048×1536时可达18和0.56. SIFT(scale invariant feature transform) has been widely applied to object detection and recognition, image registration and fusion, texture recognition, scene classification, human face detection, image retrieval, 3D reconstruction, digital watermarking, and object tracking. However, it is compute-intensive and time-consuming. A distributed parallel algorithm for extracting SIFT features (DP-SIFT algorithm) is proposed using data parallel strategy on PC clusters/COW (cluster of workstation) based on message passing. An algorithm for data blocking with limitation on height and width is designed according to the specific characteristic of feature extraction space. Data distribution and feature adjustment methods are also presented. A strategy of data blocking coordinate with data passing approaches for communication optimization in image parallel processing is proposed after the effect of data blocking methods and data passing approaches on communication time are investigated. Experimental results verify that the DP-SIFT algorithm has remarkable performance on speedup and efficiency. On clusters of PCs with 32 cores linked by gigabit Ethernet, the speedup and efficiency can reach as high as 20 and 0.6 respectively when input image scale is 1 024×768, and 18 and 0.56 when input image scale is 2 048 × 1 536.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第5期1130-1141,共12页 Journal of Computer Research and Development
基金 天津市"十一五"重点投资人才引进计划基金项目(029416)
关键词 SIFT DP—SIFT 数据并行 消息传递 并行图像处理 数据分块 SIFT DP-SIFT data parallel message passing parallel image processing data blocking
  • 相关文献

参考文献16

  • 1Lowe D G. Object recognition from local scale-invariant features [C] //Proc of the 7th IEEE Int Conf on Computer Vision. Piscataway, NJ: IEEE, 1999.. 1150-1157.
  • 2Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features ( SURF ) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 4Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10) : 1615-1630.
  • 5Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors [C] //Proc of the 2004 IEEE Computer Society Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2004:511-517.
  • 6Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(4).. 509-522.
  • 7Yao Lifan, Feng Hao, Zhu Yiqun, et al. An architecture of optimised SIFT feature detection for an FPGA implementation of an image matcher [C] //Proc of the International Conf on Field-Programmable Technology (FPT2009). Piscataway, NJ IEEE, 2009:30-37.
  • 8Bonato V, Marques E, Constantinides G A. A parallel hardware architecture for scale and rotation invariant feature detection[J] IEEE Trans on Circuits and Systems for Video Technology, 2008, 18(12).. 1703-1712.
  • 9Heyrnann S, Mueller K, Smolic A, et al. SIFI implementation and optimization for general-purpose GPU [C] MProc of the Int Conf in Central Europe on Computer Graphics (WSCG'07). Pzen, Czech Republic Thomson Reuters]ISI-WoS, 2007:317-322.
  • 10Kim J, Park E, Cui X N, et al. A fast feature extraction in object recognition using parallel processing on CPU and GPU [C] //Proc of the 2009 IEEE Int Conf on Systems, Man and Cybernetics. Piscataway, NJ IEEE, 2009 3842-3847.

二级参考文献29

  • 1蒋艳凰,杨学军,易会战.卫星遥感图像并行几何校正算法研究[J].计算机学报,2004,27(7):944-951. 被引量:20
  • 2陈左宁.从高性能计算走向高效能计算[J].计算机教育,2004(6):26-28. 被引量:5
  • 3方金云 池天河 等.基于机群的地理数据并行处理试验.中国地理信息系统协会第六届年会论文集[M].,2001.158-162.
  • 4K.R.Castleman 朱志刚等(译).数字图像处理[M].北京:电子工业出版社,1999..
  • 5方金云,中国地理信息系统协会第六届年会论文集.2,2001年,158页
  • 6朱志刚,数字图像处理,1999年
  • 7Lu H,J Parallel Distributed Computing,1997年,43卷,2期,65页
  • 8徐冠华,www.digitalearth.net.cn/digitalearth/readingroom/professionalpaper/xghw1.htm
  • 9Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Application, 1986, 11(6): 207~212.
  • 10T Beier, S Neely. Feature-based image metamorphosis. Computer Graphics, 1992, 26(2): 35~42.

共引文献45

同被引文献53

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部