期刊文献+

GPS/INS组合导航系统中的高斯粒子滤波混和算法 被引量:9

Gaussian particle filtering hybrid algorithm for GPS/INS integrated navigation system
下载PDF
导出
摘要 采用非线性滤波器的惯性组合导航系统中,非线性滤波器的精度和实时性直接决定了惯性组合导航系统的性能。计算量和精度之间的矛盾是制约粒子滤波在GPS/INS组合导航系统中应用的主要因素。在分析高斯粒子滤波算法原理的基础上,提出了一种高斯粒子滤波混和算法,对系统线性部分采用线性递推方式,对系统非线性部分采用非线性递推方式,从而提高高斯粒子滤波精度和实时性。针对GPS/INS组合导航系统,混和算法利用卡尔曼滤波的线性递推方式进行量测更新,仿真结果表明混和算法在较少粒子条件下,相对高斯粒子滤波算法精度提高20%,滤波时间降低40%。 When a nonlinear filter is applied to inertial integrated navigation system, the precision and real-time performance of the nonlinear filter will directly determine the performance of the system. The incompatibility between computation and precision is a big obstacle for the application of particle filtering to GPS/INS integrated navigation system. In this research, a hybrid algorithm founded on Gaussian particle filter is proposed. In the new algorithm, a linear deduction will be employed for the linear part and a non-linear method will be used for the non-linear part to improve the precision and real-time performance of Gaussian particle filter. In response to the GPS/INS integrated navigation system, the hybrid algorithm measurement update is implemented by linear Kalman filter. Results from the simulation show that under the condition of fewer particles, the hybrid algorithm can improve the precision by 20% and reduce filtering time by 40%, compared with those by Gaussian particle filter algorithm.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2012年第2期225-229,共5页 Journal of Chinese Inertial Technology
基金 科技部国际科技合作项目(2010DFA70990) 国家自然科学基金项目(41164001 60904091) 江西省教育厅科技项目(GJJ12135)
关键词 非线性滤波 粒子滤波 高斯粒子滤波 惯性导航系统 组合导航系统 nonlinear filtering particle filter Gaussian particle filter inertial navigation system integratednavigation system
  • 相关文献

参考文献11

二级参考文献52

  • 1康国华,刘建业,祝燕华,熊智.GPS/SST/SINS组合导航系统研究[J].应用科学学报,2006,24(3):293-297. 被引量:16
  • 2Bouaynaya N, Qu W, Schonfeld D. An online motion-based par ticle filter for head tracking applications[ C ]// IEEE lnternation al Conference on Acoustics, Speech, and Signal Processing 2005 : 225 - 228.
  • 3Aggarwal P, Syed Z, El-Sheimy N. Hybrid extended particle filter (HEPF) for integrated civilian navigation system [ C ]// IEEE/ION Position, Locatl d Navigation Symposium, 2008.984-992.
  • 4Schon T, Gustafsson F, Nordlund, P J. Marginalized particle filters for mixed linear/nonlinear state-space models [ J ]. IEEE Transactions on Signal Processing, 2005, 53 (7) : 2279 -2289.
  • 5Sarkka S, Vehtari A, Lampinen J. Rao-Blaekwellized particle filter for muhiple target traeking[J]. Information Fusion, 2007, 8(1):2-15.
  • 6Hendeby G, Kartsson R, Gustafsson F. A new formulation of the rao-blackwellized particle filter[ C]// 1EEE/SP 14th Workshop on Statistical Signal Processing, 2007:84 -88.
  • 7Grisetti G, Tipaldi G D, Stachniss C, et al. Fast and accurate SLAM with Rao-Blackwellized particle filters [ J ]. Robotics and Autonomous Systems, 2007, 55(1 ) : 30 - 38.
  • 8Kotecha J H, Djuric P M. Gaussian particle filtering[ J]. IEEE Transactions on Signal Processing, 2003, 51 (10): 2592 - 2601.
  • 9Musso C, Oudjane N. Le Gland F. Improving regularized particle filters[ C]// Doucet A, de Freitas N, Gordon N. Sequential Monte Carlo methods in practice, Springer, New York, 2001: 247 - 271.
  • 10Miller I,Campbell M.Particle filtering for map-aided localization in sparse GPS environments[C] //IEEE International Conference on Robotics and Automation,2008:1834-1841.

共引文献52

同被引文献80

  • 1陈鹏,钱徽,朱淼良.一种快速高斯粒子滤波算法[J].华中科技大学学报(自然科学版),2008,36(S1):291-294. 被引量:9
  • 2夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12(6):1-4. 被引量:34
  • 3杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 4王宁,王从庆.高斯粒子滤波器及其在非线性估计中的应用[J].南京航空航天大学学报,2006,38(B07):132-135. 被引量:8
  • 5赵琳.非线性系统滤波理论[M].北京:国防工业出版社,2012.
  • 6Avitzour. A stochastic simulation Bayesian approach to multi-target tracking[A]. IEE Proceeding on Radar, Sonar and Navigation UK: IEEE, 1995.
  • 7G. Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models[J]. Journal of Com- putational and Graphical Statistics, 1996, 5 : 1 - 25.
  • 8Andrieu C, Doucet A, Singh S S, et al. Particle methods for change detection, system identification, and control[J]. Proc. IEEE, 2004, 92(3): 423-438.
  • 9N J Gordon, DJ Salmond, A F M Smith. Novel approach to nonlinear and non-Gaussian Bayesian state estimation [A]. IEEE Proceedings F[C]. UK: IEEE, 1993, 140(2): 107 -113.
  • 10Kotecha JH, Djuric PM. Gaussian particle filtering[J]. IEEE Transactions on Signal Processing, 2003, 51 (10) : 2592 - 2601.

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部