期刊文献+

矩阵值函数空间中尺度空间的稠密性

The density of the space of matrix-valued scaling function
下载PDF
导出
摘要 多分辨分析的概念在小波基构造中起着非常重要的作用,并经历了从经典多分辨分析到多重多分辨分析,再到矩阵值多分辨分析的研究历程.本文基于矩阵值多分辨分析,研究并给出了矩阵值函数空间中尺度空间稠密性的两个充要条件,并在此基础之上得到了稠密性的两个充分条件. The multiresolution analysis is a very important to construct the wavelet basis. From the classic multiresolution analysis to the multiwavelets multiresolution analysis and the matrix-valued multiresolution analysis, the content of the MRA has been greatly development. In this paper, we discuss the density of the space of matrix-valued scaling function which is based on the space of matrix-valued functions. And finally, we give two necessary and sufficient conditions and two sufficient conditions of the density.
出处 《纯粹数学与应用数学》 CSCD 2012年第2期143-148,共6页 Pure and Applied Mathematics
基金 大学生创新性实验计划(101001027)
关键词 矩阵值多分辨分析 矩阵值函数空间 尺度空间 稠密性 matrix-valued multiresolution analysis, the space of matrix-valued functions, the space of matrix-valued scaling function, density
  • 相关文献

参考文献1

二级参考文献8

  • 1Chui C K, Lian J. A study of orthonormal multiwavelets[J]. Appli. Numer. Math., 1996, 20(1): 273-298.
  • 2Yang S. Construction of biorthogonal multiwavelets[J]. Math. Anal. Appl., 2002, 276(1): 1-12.
  • 3Zhang N, Wu X. Lossless of color masaic images[J]. IEEE Trans. Image Delivery, 2006, 15(6) :1379-1388.
  • 4Efromovich S, lakey J, Pereyia M, et al. Data-Diven and Optimal Denoising of a Signal and Recovery of its Derivation Using Multiwavelets[J]. IEEE Transaction Signal Processing, 2004, 52(3): 628-635.
  • 5Kaneko H, Noren D R, Novaprateep B. Wavelet applications to the Petrov-Galerkin method for Hammerstein equations[J]. Appl. Numer. Math., 2003, 45(1):255-273.
  • 6Xia X. Vector-valued wavelets and vector filter banks[J]. IEEE Trans. Signal Proc., 1996, 44(3): 508-518.
  • 7Fowler J E, Li H. Wavelet Transforms for Vector Fields Using Omnidirectionally Balanced Multi-wavelets[J]. IEEE Trans. Signal Processing, 2002, 50(12): 3018-3027.
  • 8Xia X, Geronimo J S, Hardin D P, et al. Design of prefilters for discrete multiwavelet transforms[J]. IEEE Trans. Signal Processing, 1996, 44(1): 25-35.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部