期刊文献+

带非局部积分项常微分方程的讨论及其应用

Discussion and application of ordinary differential equation with non-local integral term
下载PDF
导出
摘要 研究带非局部积分项的二阶线性常微分方程及其在金融保险上的应用.首先讨论带非局部积分项的二阶常微分方程解的存在唯一性,通过变量代换和累次积分交换积分顺序将非局部项简化,将方程化为方程组,然后完成了对方程组解的存在唯一性的证明.接着分析了带非局部项的二阶常微分方程解的结构,给出了方程解的形式.最后通过推导,指出带非局部项的线性常微分方程在保险公司的破产概率研究中的应用,重点放在二阶方程的应用上,并且在某一特定情况下,举出了一个可以给出解析解的例子. Second-order linear ordinary differential equation with non-local integral term inside are major discussed in this thesis. Firstly, we canvass the existence and uniqueness of the solution of the second-order ordinary integro-differential equation. By variable substitution and exchanging sequence of repeated integral, the non-local integral term can be simplified, the equation can be transformed into system of equations. Then, the proof of existence and uniqueness of the solution of equations are completed here. Second, we analyze the structure of the solution, also we give the solution form of the equation. At last, we point out the application of the ordinary integro-differential equation through deduction. It can be used in ruin probabilities' of an insurance company. We focus our energies upon the application of the second-order equation. Furthermore, the explicit expressions for the integro-differential equations will be presented when the claims are exponentially distributed.
出处 《纯粹数学与应用数学》 CSCD 2012年第2期219-227,共9页 Pure and Applied Mathematics
关键词 非局部积分项 二阶常微分方程 破产概率 non-local integral term, second-order differential equation, ruin probability
  • 相关文献

参考文献10

  • 1Kong Q,Zettl A. Dependence of eigenvalues of Sturm-Liouville problems on the boundary[J].Differential Equations,1996.389-407.
  • 2Kong O,Zettl A. Eigenvalues of regular Sturm-Liouville r)roblems[J].Differential Equations,1996.1-19.
  • 3Kong Q,Zettl A. Linear ordinary differential equations in "Inequalities and Applications"[J].WSSIAA,1994.381-384.
  • 4Kong Q,Wu H,Zettl A. Dependence of the nth Sturm-Liouville Eigenvalue on the problem[J].Differential Equations,1999.328-354.
  • 5Kong Q,Wu H,Zettl A. Dependence of eigenvalues on the problem[J].Nachr Math,1997.173-201.
  • 6Zettl A. Sturm-Liouville Problems in "Spectral Theory and Computational Methods of Stur-Liouville Prob-lems"[M].New York:Dekker,1997.
  • 7李丽,黄振友.一类Schrdinger算子的谱范围[J].纯粹数学与应用数学,2011,27(3):387-391. 被引量:4
  • 8Evitan B M. On the determination of a Sturm-Liouvillle equation by two spectra[J].Mat Tidskr,1949.25-30.
  • 9Paul Phillips D. A partial inverse Sturm-Liouville problem:Matching a step function potential to a finite eigenvalue list[J].Journal of Mathematical Analysis and Applications,2005.248-260.
  • 10Chavel I. Eigenvalues in Riemannian Geometry[M].Orlando:Academic Press,1984.

二级参考文献6

  • 1Gel'fand I M, Levitan B M. On the determination of a differential equation from its special function[J]. Izv. Akad. Nauk SSR. Ser. Mat., 1951,15:309-360.
  • 2Krein M G. Solution of the inverse Sturm-Liouville problem[J]. Dokl. Akad. Nauk SSSR, 1951,76:21-24.
  • 3Borg G. Uniqueness theorems in the spectral theory of y" + (λ- q(x))y = 0[C]. Oslo: Johan Grundt Tanums Forlag, 1952.
  • 4Marchenko V A. Some questions in the theory of one-dimensional linear differential operators of the second order[J]. Trudy Moskov. Math. Obsc, 1952,1:327-420.
  • 5Simon B. A new approach to inverse spectral theory, I . Fundamental formalism[J]. Annals of Mathematics, 1999,150:1029-1057.
  • 6Gesztesy F, Simon B. A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure[J]. Annals of Mathematics, 2000,152:593-643.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部