期刊文献+

非线性一阶常微分方程解的存在惟一性

Existence and uniqueness of solutions for first-order nonlinear ordinary differential equations
下载PDF
导出
摘要 讨论了一类非线性一阶常微分方程边值问题解的存在惟一性.得到了当参数在一定的范围取值时解存在惟一的充分条件,并包含了一些已知结果.主要结果基于Leray-Schauder非线性抉择理论和Banach不动点定理. In this paper, we show the existence and uniqueness of solutions of first-order nonlinear ordinary differential equation boundary value problem. The sufficient conditions for the existence and uniqueness of solutions are obtained when the parameter belongs to appropriate intervals, and we include some known results. The main results are based upon Leray-Schauder nonlinear alternative theorem and Banach's fixed point theorem.
作者 蒋玲芳
出处 《纯粹数学与应用数学》 CSCD 2012年第2期256-261,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(10671158) 甘肃省自然科学基金(3ZS051-A25-016)
关键词 一阶非线性微分方程 存在性 惟一性 LERAY-SCHAUDER非线性抉择 BANACH不动点定理 first-order nonlinear differential equation, existence, uniqueness, Leray-Schauder nonlinear alternative, Banach^s fixed point theorem
  • 相关文献

参考文献3

二级参考文献23

  • 1LuShiping,GeWeigao.EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS[J].Applied Mathematics(A Journal of Chinese Universities),2002,17(4):382-390. 被引量:23
  • 2Guo Dajun. Nonlinear Functional Analysis (in Chinese)[M]. Jinan:Science and Technology Press of Shangdong Province, 1985,286 - 329.
  • 3Lalli B S, Zhang B G. On a periodic delay population model[J]. Quart Appl Math, 1994,LII:35- 42.
  • 4Yan J R, Feng Q X. Global attractivity and oscillation in a nonlinear delay equation[J]. Nonlinear Analysis, 2000,43:101- 108.
  • 5Li Y. Periodic solutions of a periodic delay predator--prey system[J]. Pro Amer Math Soc, 1999,127(5): 1331- 1335.
  • 6Li Y. Periodic solutions for delay Lotka-volterra competition system[J]. J Math Anal Appl, 2000,246(2) :230-244.
  • 7Knang Y. Delay differential equations with applications in population dynamics[M]. Boston:Academic Press, 1993.
  • 8Shi B, Chen Y. A prior bounds and stability of solutions for a volterra reaction-diffusion equation with infinite delay[J]. Nonlinear Analysis, 2001,44:97- 121.
  • 9Jiang Daqing. Existence of position periodic solutions for non-autonomous delay different equations[J].Chinese Ann of Math,1999,20A(6):715-720.
  • 10Fan Meng, Wang Ke. Existence of position periodic solutions of an integral differential equation system[J]. Acta Math. Sinica (in Chinese) ,2001,44(3) :437-444.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部