摘要
第一问中对CD4数量和HIV浓度随周期变化分别建立线性模型和二次模型,由数据确立中度患者CD4随时间变化模型为:C(T)=0.0496T+3.0659,HIV随时间变化为:H(T)=0.0044T2-0.2317T+4.2899.确定最佳治疗终止时间为:轻度患者28.90周,中度患者31.97周,重度患者为40.86周,平均最佳终止治疗时间33.91周.第二问中得出疗法4效果最好,疗法3次之,疗法1最差.然后通过建立了回归分析模型,对最优疗法进行预测,得到最佳终止治疗时间为25.53周.第三问在第二问的基础上增加了治疗费用对治疗效果的影响,计算得出:疗法3为最优,疗法1次之,疗法2最差.用疗法3的数据进行作图分析得到疗法3的最佳治疗终止时间为40周.
In first section, we set up linear and quadratic model for density of CD4 and HIV with time. Amount of CD4 of middle sufferer with time satisfy: C(T) = 0.0496T + 3.0659 , Amount of HIV: H(T) = 0.0044T^2 - 0.2317T + 4.2899. Stopping therapy best time: early, middle and late sufferer are: 28.8th week, 31.97th week and 40.8th week. Average best stopping time is 33.91th week. In second section, the result show that treatment 4 is best one, after treatment 3; treatment 1 is bad. We set up regress model for treatment 4, and predict best stopping time: 25.53th week. Based on the second section, the third section add the influence of cost to effect of treatment. By fuzz judge matrix, show that treatment 3 is the best one, after treatment 1; treatment 2 is bad. Through the graphical analysis, stopping therapy best time for treatment 3 is 40th week.
出处
《纯粹数学与应用数学》
CSCD
2012年第2期275-284,共10页
Pure and Applied Mathematics
基金
西北农林科技大学教学改革研究项目(JY0902109)
关键词
CD4
HIT
健康指数
模糊综合评判
评价比
CD4, HIV, health index, fuzz general evaluation, ratio of effect with cost