期刊文献+

基于多分形波动率测度的ES风险度量 被引量:13

Excepted Shortfall Estimation Based on Multifractal Volatility
下载PDF
导出
摘要 多分形波动率(Multifractal Volatility,MFV)是一种最近提出的金融市场波动率测度方法。以上证综指和标准普尔500指数的高频价格数据为例,构造了多分形波动率测度的lnMFV-ARMA动力学模型,并运用基于Bootstrap方法的后验分析过程,实证对比了lnMFV-ARMA模型与其他6种常用波动模型对ES(Excepted Shortfall)风险测度的估计精度差异。实证结果表明:在所考察的大多数分位数水平下,lnMFV-ARMA模型对ES风险测度的估计精度都优于许多现有常用波动模型,特别是对标准普尔500指数的极端价格波动风险具有最优的刻画能力。 Multifractal Volatility(MFV) is a recently proposed volatility measurement.We take the high-frequency datasets of SSEC and SP500 as sample and construct an lnMFV-ARMA model to estimate excepted shortfall.We further compare lnMFV-ARMA model with other volatility models based on the ES estimation precision.Empirical results show that model based on multifractal volatility performs better than many GARCH models and lnMFV-ARMA performs best in ES estimation to SP500 index.
作者 王鹏 魏宇
出处 《系统管理学报》 CSSCI 2012年第2期192-200,共9页 Journal of Systems & Management
基金 国家自然科学基金资助项目(71071131 71101119) 教育部新世纪优秀人才支持计划(NCET-08-0826) 西南财经在211工程三期青年教师成长项目第二批(211QN10110)
关键词 多分形波动率 ARMA模型 ES 风险度量 multifractal volatility ARMA model excepted shortfall risk measurement
  • 相关文献

参考文献2

二级参考文献29

  • 1Lux T,Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market[J]. Nature,1999,397:498-450.
  • 2Farmer J D,Lo A W. Frontiers of finance:evolution and efficient markets[C]. Proc. Natl. Acad. Sci. USA, 1999,969:991-995.
  • 3Bonanno G,Lillo F,Mantegna R N. Levels of complexity in financial markets[J]. Physica A,2001,299:16-27.
  • 4Ausloos M, Vandewalle N, Boveroux. Applications of statistical physics to economic and financial topics[J].Physica A, 1999,274:229-240.
  • 5Stanley H E, Amaral L A N, Gabaix X. Similarities and differences between physics and economics[J].Physica A,2001,299:1-15.
  • 6Cont R,Potters M,Bouchaud J-P. In : Dubrulle B,Graner F,Sornette D(Eds. ). Scale invariance and beyond[C]. Berlin : Springer, 1997.
  • 7Plerou V,Gopikrishnan P,Amaral L A N,Meyer M,Stanley H E. Scaling of the distribution of price fluctuations of individual companies[J ]. Phys. Rev. E, 1999,60: 6519- 6529.
  • 8Gopikrishnan P,Plerou V,Amaral L A N, Meyer M,Stanley H E. Scaling of the distributions of fluctuations of financial market indices[J]. Phys. Rev. E, 1999,60: 5305- 5316.
  • 9Schmitt F,Schertzer D,Lovejoy S. Multifraetal fluctuations in finance[J]. Int. J. Theor. Appl. Fin. ,2000,3:361-364.
  • 10Mandelbrot B B. A multifractal walk down Wall Street [J]. Scientific American, 1999,298 : 70- 73.

共引文献46

同被引文献179

引证文献13

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部