期刊文献+

基于可见光红外与被动微波遥感的土壤水分协同反演 被引量:14

Monitoring land surface soil moisture: co-inversion of visible, infrared and passive microwave sensing data
下载PDF
导出
摘要 利用MODIS传感器的可见光、红外波段数据反演土壤水分在一定时段内的基准值,用被动微波传感器AMSR-E数据反演其变化量,提出将被动微波遥感数据与热红外遥感数据在模型级别协同反演大范围地表土壤水分的方法,这样每天可输出1 km×1 km的升、降轨土壤水分反演结果.以新疆为研究区,对上述方法进行了土壤水分协同反演实验,以地面实测数据为参考的验证结果表明,所提模型得到的土壤水分值与地面实测值之间相关性较高,均方根误差较小,优于单一传感器数据的反演结果,可更好地满足新疆土壤水分监测的需求. To effectively retrieve large-scale daily soil moisture,this study proposed a model-level integrated approach termed co-inversion of visible,infrared and passive microwave remote sensing data.Specifically,the MODIS data are used to derive soil moisture base,and the AMSR-E data are employed to estimate daily variation of land surface soil moisture over a large area.The soil moisture information over the large area is then estimated by integrating these two parts: base and variation.Improvements inherent in the proposed approach enable daily 1 km×1 km soil moisture estimation of the entire study area,even when some areas were covered with clouds.Verification with ground truthing data in Xinjiang,China shows that the co-inversion of thermal and passive microwave remotely sensed data can achieve better estimation of soil moisture than each single data source or model.The square correlation coefficient is 0.86 and RSME is 3.99 when the estimated soil moisture is compared with the ground truthings.The results proved that the co-inversion model outperformed either the MODIS or AMSR-E inversion of soil moisture over large areas,and can meet the needs of Xinjiang's soil moisture monitoring.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2012年第2期137-142,147,共7页 Journal of Infrared and Millimeter Waves
基金 国家863计划课题(2008AA12Z112) 国家自然科学基金(41071257)~~
关键词 协同反演 土壤水分 红外 被动微波 AMSR-E MODIS co-inversion soil moisture infrared passive microwave AMSR-E MODIS
  • 相关文献

参考文献24

  • 1Sandholt I,Rasmussen K,Andersen J.A simple interpreta-tion of the surface temperature/vegetation index space forassessment of surface moisture status[J].Remote Sensing ofEnvironment.2002,79(2-3):213-224.
  • 2Mallick K,Bhattacharya B K,Patel N K.Estimating volumet-ric surface moisture content for cropped soils using a soil wet-ness index based on surface temperature and NDVI[J].Agri-cultural and Forest Meteorology.2009,149(8):1327-1342.
  • 3Stisen S,Sandholt I,Norgaard A,et al.Combining the tri-angle method with thermal inertia to estimate regional evapo-transpiration-Applied to MSG-SEVIRI data in the Sen-egal River basin[J].Remote Sensing of Environment.2008,112(3):1242-1255.
  • 4Price J C.On the analysis of thermal infrared imagery:Thelimited utility of apparent thermal inertia[J].Remote Sens-ing of Environment.1985,18(1):59-73.
  • 5Verhoef A.Remote estimation of thermal inertia and soilheat flux for bare soil[J].Agricultural and Forest Meteorol-ogy.2004,123(3-4):221-236.
  • 6Schmugge T J.Effect of texture on microwave emission fromsoils[J].Geoscience and Remote Sensing,IEEE Transac-tions on.1980,GE-18(4):353-361.
  • 7Owe M,de Jeu R,Holmes T.Multisensor historical clima-tology of satellite-derived global land surface moisture[J].J.Geophys.Res.2008,113(F1):F1002.
  • 8Njoku E G,Jackson T J,Lakshmi V,et al.Soil moistureretrieval from AMSR-E[J].Geoscience and Remote Sens-ing,IEEE Transactions on.2003,41(2):215-229.
  • 9Njoku E G,Chan S K.Vegetation and surface roughnesseffects on AMSR-E land observations[J].Remote Sensingof Environment.2006,100(2):190-199.
  • 10Pellarin T,Laurent J P,Cappelaere B,et al.Hydrologicalmodelling and associated microwave emission of a semi-aridregion in south-western Niger[J].Journal of Hydrology.2009,375(1-2):262-272.

同被引文献207

引证文献14

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部