摘要
根据不同变量对所用近似公式精度的影响,将曲线划分为不同区域。先在各区域内使用不同变量表示高斯公式来近似弧长,再利用分段三次多项式插值拟合建立弧长与坐标的函数关系,最后求出各个插补点坐标和各步的进给增量,完成插补过程。
Because of different variables lead to different influences on the accuracy of the approximate formula being used,the method divides the arc into diverse areas.Firstly,using different variable in the Gauss-Legendre quadrature formula to express the arc length.Then building the relationship between the length and the coordinates with the segmented cubic polynomial interpolation formula.Finally making out the coordinates of each interpolation points and the feed of each step,to finish the process of interpolation. ellipse interpolation;arc length formula;gauss-legendre quadrature formula;segmented cubic polynomial interpolation formula
出处
《组合机床与自动化加工技术》
北大核心
2012年第4期1-4,共4页
Modular Machine Tool & Automatic Manufacturing Technique
基金
国家重点基础研究发展计划资助(973项目)(2011CB302400)
关键词
椭圆插补
弧长公式
高斯-勒让德求积公式
分段三次多项式插值
ellipse interpolation
arc length formula
gauss-legendre quadrature formula
segmented cubic polynomial interpolation formula