摘要
为提高多分类器系统的分类精度,提出了一种基于粗糙集属性约简的分类器集成方法 MCS_ARS。该方法利用粗糙集属性约简和数据子集划分方法获得若干个特征约简子集和数据子集,并据此训练基分类器;然后利用分类结果相似性得到验证集的若干个预测类别;最后利用多数投票法得到验证集的最终类别。利用UCI标准数据集对方法 MCS_ARS的性能进行测试。实验结果表明,相较于经典的集成方法,方法 MCS_ARS可以获得更高的分类准确率和稳定性。
To improve the accuracy of multiple classifier system,this paper proposed an classifier ensemble method MCS_ARS.This method used rough set attribute reduction and data partition to obtain a number of features subset and data subset to train base classifier,then it used the similarity of the classification results to get the results of validation set and got the final classification results of validation set by majority voting.Experiment results on UCI data sets show that compared to classical ensemble methods,MCS_ARS has higher classification accuracy and stability.
出处
《计算机应用研究》
CSCD
北大核心
2012年第5期1648-1650,共3页
Application Research of Computers
基金
国家自然科学基金资助项目(70971067)
江苏省自然科学基金资助项目(BK2010331)
关键词
集成学习
粗糙集
属性约简
ensemble learning
rough set
attribute reduction