期刊文献+

一种基于粗糙集属性约简的多分类器集成方法 被引量:7

New classifier ensemble method based on rough set attribute reduction
下载PDF
导出
摘要 为提高多分类器系统的分类精度,提出了一种基于粗糙集属性约简的分类器集成方法 MCS_ARS。该方法利用粗糙集属性约简和数据子集划分方法获得若干个特征约简子集和数据子集,并据此训练基分类器;然后利用分类结果相似性得到验证集的若干个预测类别;最后利用多数投票法得到验证集的最终类别。利用UCI标准数据集对方法 MCS_ARS的性能进行测试。实验结果表明,相较于经典的集成方法,方法 MCS_ARS可以获得更高的分类准确率和稳定性。 To improve the accuracy of multiple classifier system,this paper proposed an classifier ensemble method MCS_ARS.This method used rough set attribute reduction and data partition to obtain a number of features subset and data subset to train base classifier,then it used the similarity of the classification results to get the results of validation set and got the final classification results of validation set by majority voting.Experiment results on UCI data sets show that compared to classical ensemble methods,MCS_ARS has higher classification accuracy and stability.
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1648-1650,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(70971067) 江苏省自然科学基金资助项目(BK2010331)
关键词 集成学习 粗糙集 属性约简 ensemble learning rough set attribute reduction
  • 相关文献

参考文献11

  • 1曾安,潘丹,郑启伦,彭宏.用于T细胞表位预测的分类器集成方法[J].计算机应用研究,2008,25(1):50-52. 被引量:2
  • 2FREUND Y,SSHAPIRE R E.A decision-theoretic generalization ofonline learning and application to boosting[C]//Proc of the 2nd Eu-ropean Conference on Computational Learning Theory.London,UK:Springer-Verlag,1995:23-27.
  • 3HO T K.Random decision forests[C]//Proc of ICDAR.WashingtonDC:IEEE Computer Society,1995:278-282.
  • 4SAHA S,MURTHY C A,PAL S K.Rough set based ensemble classifi-er for Web page classification[J].Fundamenta Informaticae,2007,76(1-2):171-187.
  • 5VALDES J J,ROMERO E,GONZALEZ R.Data and knowledge vi-sualization with virtual reality spaces,neural networks and rough sets:application to geophysical prospecting neural networks[C]//Proc ofInternational Joint Conference on Neural Networks.[S.l.]:IEEE,2007:60-165.
  • 6YU Huo-yin,WANG Guo-yin,YANG Da-chun,et al.Knowledge re-duction algorithms based on rough set and conditional information en-tropy[C]//Proc of SPIE.2002:422-431.
  • 7FREUND Y,SCHAPIRE R E.A decision theoretic generalization ofonline learning and an application to boosting[J].Journal of Com-puter and System Sciences,1997,55(1):119-139.
  • 8BREIMAN L.Bagging predicators[J].Machine Learning,1996,24(2):123-140.
  • 9KOHAVI R,JOHN G H.Wrappers for feature subset selection[J].Artificial Intelligence,1997,97(1-2):273-324.
  • 10SLEZAK D,WIDZ S.Is it important which rough-set-based classifierextraction and voting criteria are applied together[C]//Proc of the 7thInternational Conference on Rough Set and Current Trends in Compu-ting.Berlin:Springer-Verlag,2010:187-196.

二级参考文献6

  • 1MARKUS S,TONI W,STEFAN S.Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens[J].Journal of Immunological Methods,2001,257(1/2):1-16.
  • 2PAN Dan,ZHENG Qi-lun,WEN Gui-hua,et al.A novel self-optimizing approach for knowledge acquisition[J].IEEE Transactions on Systems,Man,and Cybernetics:Part A,2002,32(4):505-514.
  • 3MAK B,MUNAKATA T.Rule extraction from expert heuristics:a comparative study of rough sets with neural networks and ID3[J].European Journal of Operational Research,2002,136(1):212-229.
  • 4BRUSIC V,GEORGE R,MARGO H,et al.Prediction of MHC class Ⅱ-binding peptides using an evolutionary algorithm and artificial neural network[J].Bioinformatics,1998,14(2):121-130.
  • 5RAMMENSEE H,BACHMANN J,EMMERICH N P,et al.SYFPEITHI:database for MHC ligands and peptide motifs[J].Immunogenetics,1999,50(3-4):213-219.
  • 6王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766. 被引量:594

共引文献1

同被引文献67

  • 1李华,孙东旺,贺鹏举,李玲玲.基于超程时间回归模型的继电器寿命预测方法[J].电工技术学报,2013,28(S2):414-417. 被引量:23
  • 2张楠.低秩鉴别分析与回归分类方法研究[D].南京:南京理工大学,2012.
  • 3Huang G B,Mattar M,Berg T,et al.Labeled faces in the wild: a database for studying face recognition in uncon- strained environments[C]/AVorkshop on Faces in 'Real-Life' Images : Detection, Alignment, and Recognition, 2008.
  • 4杨利平,叶洪伟.人脸识别的相对梯度方向边缘幅值模式[J].光学精密工程,2013,21(4):1101-1109.
  • 5Cox D, Pinto N.Beyond simple features: a large-scale fea- ture search approach to unconstrained face recognition[C]// 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops(FG 2011 ) ,2011 : 8-15.
  • 6Guillaumin M,Verbeek J, Schmid C.Is that you?Metric learning approaches for face identification[C]//2009 IEEE 12th International Conference on Computer Vision,2009: 498-505.
  • 7Yin Q, Tang X, Sun J.An associate-predict model for face recognition[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2011 : 497-504.
  • 8杨利平,叶洪伟.人脸识别的相对梯度方向边缘幅值模式[J].中国科技论文在线精品论文,2014,7(4):300-305.
  • 9COX D,PINTO N.Beyond simple features:A large-scale feature search approach to unconstrained face recognition[C]//Proceedings of the 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops.Piscataway:IEEE,2011:8-15.
  • 10GUILLAUMIN M,VERBEEK J,SCHMID C.Is that you? Metric learning approaches for face identification[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision.Piscataway:IEEE,2009:498-505.

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部