期刊文献+

一种基于属性分割的产生式/判别式混合分类器 被引量:1

Generative/discriminative hybrid classifier based on attributes partitioning
下载PDF
导出
摘要 为了利用产生式和判别式方法各自的优势,研究了基于属性分割的产生式/判别式混合分类模型框架,提出了一种基于属性分割的产生式/判别式混合分类器学习算法GDGA。其利用遗传算法,将属性集X划分为两个子集XG和XD,并相应地将训练集D垂直分割为两个子集DG和DD,在两个训练子集上分别学习产生式分类器和判别式分类器;最后将两个分类器合并形成一个混合分类器。实验结果表明,在大多数数据集上,混合分类器的分类正确率优于其成员分类器。在训练数据不足或数据属性分布不清楚的情况下,该混合分类器具有特别的优势。 In order to exploit the best of generative and discriminative approaches,on the basis of investigating a framework of generative/discriminative hybrid model based on attributes partitioning,this paper proposed a learning algorithm of generative/discriminative hybrid classifier based on attributes partitioning,GDGA.This algorithm divided the attributes X into two subsets,XG and XD,by applying genetic algorithms,and vertically partitioned the training set into two subsets DG and DD accordingly.Then it trained a generative classifier and a discriminative classifier on DG and DD respectively.In the final,it constructed a generative/discriminative hybrid classifier by combining the generative classifier and the discriminative classifier.Experimental results show that the generative/discriminative hybrid classifier performs better than its generative component and discriminative component on most data sets.This hybrid classifier has particular advantage in the case of unclear attribute distribution or not enough training data.
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1654-1658,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60873100) 山西省自然科学基金资助项目(2009011017-4)
关键词 分类 产生式 判别式 属性分割 遗传算法 classification generative discriminative attributes partitioning genetic algorithms
  • 相关文献

参考文献17

  • 1RUBINSTEIN Y D,HASTIE T.Discriminative vs informative learning[C]//Proc of the 3rd International Conference on Knowledge Discov-ery and Data Mining.Menlo Park,CA:AAAI Press,1997:49-53.
  • 2NG A Y,JORDAN M I.On discriminative vs generative classifiers:acomparison of logistic regression and naive Bayes[C]//Proc of Con-ference on Advances in Neural Information Processing Systems.Cam-bridge:MIT Press,2002:841-848.
  • 3BISHOP C M,LASSERRE J.Generative or discriminative?Getting thebest of both worlds(with discussion)[C]//Proc of the 8th Worldmeeting on Bayesian Statistics.UK:Oxford Univer Sity Press,2007:3-24.
  • 4XUE J H,TITTERINGTON D M.On the generative-discriminativetradeoff approach:interpretation,asymptotic efficiency and classifica-tion performance[J].Computational Statistic and Data Analysis,2010,54(2):438-451.
  • 5EFRON B.The efficiency of logistic regression compared to normaldiscriminant analysis[J].Journal of American Statistical Associa-tion,1975,70(352):892-898.
  • 6RAINA R,SHEN Y,NG A Y,et al.Classification with hybrid gene-rative/discriminative models[C]//Advances in Neural InformationProcessing Systems.2003:545-552.
  • 7JAAKKOLA T S,HAUSSLER D.Exploiting generative models indiscriminative classifiers[C]//Proc of Conference on Advances inNeural Information Processing SystemsⅡ.Cambridge:MIT Press,1999:487-493.
  • 8TU Zhou-wen.Learning generative models via discriminative approa-ches[C]//Proc of IEEE Conference on Computer Vision and PatternRecognition.Washington DC:IEEE Computer Society,2007:1-8.
  • 9McCALLUM A,PAL C,DRUCK G,et al.Multi-conditional learn-ing:generative/discriminative training for clustering and classification[C]//Proc of the 20th National Conference on Artificial Intelligence.Boston:AAAI Press,2006:433-439.
  • 10LASSERRE J A,BISHOP C M,MINKA T P.Principled hybrid ofgenerative and discriminative models[C]//Proc of IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition.Washington DC:IEEE Computer Society,2006:87-94.

同被引文献15

  • 1Garla V, Taylor C, Brandt C. Semi - supervised clinical text classification with Laplaeian SVMs : An application to cancer ease management [ J ]. Journal of Biomedical Informaties, 2013,46 ( 5 ) :869 - 875.
  • 2Bavdekar V, Shah S. Computing point estimates from a non - Gaussian posterior distribution using a probabilistick - means clustering approach[ J]. Journal of Process Control, 2014,24(2) :487 -497.
  • 3Lazarie A, Ghavamzadeh M. Bayesian multi - task reinforcement learning[ C]. proceedings of the 27th Annual Int Croft on Machine Learning. New York: ACM, 2010:599 - 606.
  • 4Tong Z, Xiao Z, Li K, et al. Proactive scheduling in distributed computing--Areinforcement learning approach [ J ]. Journal of Parallel and Distributed Computing, 2014,74(7) :2 662 -2 672.
  • 5Jaksch T, Ortner R, Peter A. Near - optimal regret bounds for reinforcement learning[ J]. Journal of Machine Learning Re- search,2010,99(8) :1 563-1 600.
  • 6Servin A. Kudenko D. Multi - agent reinforcement learning for intrusion detection [ C ]. Proceedings of the 6th German Con- ferenee on Muhiagent System Technologies, Berlin:Springer Verlag Berlin Heidelberg, 2008.
  • 7Kumar D A, Sil J. An efficient classifier design integrating rough set and set oriented database operations [ J ]. Applied Soft Computing, 2011,11 (2) :2 279 -2 285.
  • 8Liu D, Li T R, Liang D C. Incorporating logistic regression to decision -theoretic rough sets for classifications[ J]. Inter- national Journal of Approximate Reasoning, 2014,55 ( 1 ) : 197 - 210.
  • 9Skowron A, Rauszer C. The discernibility matrices and functions in information systems[ M]//ttuang Shi - Yu ( Ed. ) Intelligent Decision Support - Handbook of Applieations and Advances of the Rough Sets Theory. Springer Netherlands 1991.331 -362.
  • 10ISCX. The NSL - KDD Data Set[ EB/OL]. ( 2012 - 08 - 02) [ 2014 - 04 - 20 ]. http ://iscx. ca/ NSL - KDD.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部