期刊文献+

一类三角形几何不等式的自动证明 被引量:4

Automated proving for class of triangle geometric inequalities
下载PDF
导出
摘要 讨论了一类只含三角函数的三角形几何不等式的自动证明问题。运用代数方法将其有理化,在不新增加根式的条件下将问题转换为一个二元多项式不等式的证明,设计的基于胞腔分解和实根分离的算法实现了二元多项式不等式的自动证明,输出的证明过程可以手工验证或借助一些数学软件进行理解。实验表明上述算法对一大批具有相当难度,特别是关于三角函数的几何不等式十分高效,并且能够解决三角形内角的任意有理倍数函数的不等式机器证明问题。 This paper discussed the automated proving for a class of triangle geometric inequalities with only trigonometric functions.Without new radicals,it firstly transformed the original inequality to a two-variable polynomial one using algebraic method firstly.And then it implemented an algorithm based on cell decomposition and real root isolation to prove the two-variable polynomial inequalities,and the output was readable or could be understood with the help of mathematic software.Experiments show that the above methods can prove an extensive class of geometric inequalities with great difficulty automatically and are much efficient especially for the inequalities with only trigonometric functions.Furthermore,the algorithm is suit for triangle geometric inequalities with arbitrary rational coefficients of interior angles.
作者 陈世平 刘忠
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1732-1736,共5页 Application Research of Computers
关键词 几何不等式 可读证明 有理化 实根分离 胞腔分解 geometric inequalities readable proof rationalization real root isolation cell decomposition
  • 相关文献

参考文献16

  • 1BUCHBERGER B,COLLINS G E,KUTZLER B.Algebraic method forgeometric reasoning[J].Annual Review of Computer Science,1988,3(1):85-119.
  • 2WU W T.Basic principles of mechanical theorem proving in elementa-ry geometies[J].Journal of Automated Reasoning,1984,2(3):207-235.
  • 3YANG Lu,ZHANG Ju.A practical program of automated proving for aclass of geometric inequalities[C]//Proc of the 3rd InternationalWorkshop on Automated Deduction in Geometry.Berlin:Springer-Ver-lag,2001:41-57.
  • 4杨路,夏时洪.一类构造性几何不等式的机器证明[J].计算机学报,2003,26(7):769-778. 被引量:37
  • 5杨路.差分代换与不等式机器证明[J].广州大学学报(自然科学版),2006,5(2):1-7. 被引量:36
  • 6杨路.关于一类多元根式不等式的证明[EB/OL].http://www.ir-goc.org/bbs/dispbbs.asp?boardID=4&ID=12&page=1.
  • 7徐嘉,姚勇.一类根式不等式的有理化算法与机器证明[J].计算机学报,2008,31(1):24-31. 被引量:12
  • 8陈世平.由初等数学实现三角形几何不等式的自动证明[M]//中国初等数学研究.哈尔滨:哈尔滨工业大学出版社,2011:24-28.
  • 9刘保乾.中国不等式论坛[EB/OL].http://www.irgoc.org/viewto-pic.php?f=26&t=855&sid=4ce7d8f57946f7f5c5d9f99919ef98bf.
  • 10AoPS.Art of problem solving[EB/OL].http://www.artofproblem-solving.com/Forum/viewtopic.php?f=52&t=372270&p=2053446JHJp2053446.

二级参考文献31

共引文献75

同被引文献24

  • 1Buchberger B, Collins G E. Algebraic method for geometric reasoning[J]. Annual Rev Computer Sci, 1988, 3: 85.
  • 2Wu W T. Basic Principles of mechanical theorem proving in elementary geometries[J]. J Systems Sci Mat Sci, 1984, 4(3): 207.
  • 3Yang L, Zhang J. A practical program of automated proving for a class of geometric inequalities. Proceedings of the Automated Deduction in Geometry, Berlin: Springer Verlag, 2001.
  • 4刘保乾.BOTTEMA,我们看见了什么[M].西藏:西藏人民出版社,2003.
  • 5陈世平.由初等数学实现三角形几何不等式的自动证明[J].中国初等数学研究,2011(3):24.
  • 6Buchberger B,Collins G E.Algebraic method for geometric reasoning[J].Annual Review of Computer Science,1988,3:85-119.
  • 7Wu W T.Basic principles of mechanical theorem proving in elementary geometries[J].Journal of Automated Reasoning,1986,2(3):221-252.
  • 8Yang L,Zhang J.A practical program of automated proving for a class of geometric inequalities[M]//Automated Deduction in Geometry.Berlin:Springer Verlag,2001:41-47.
  • 9Parshin A N,Shafarevivh I R.数论4:超越数[M].北京:科学出版社,2009.
  • 10陈世平.由初等数学实现三角形几何不等式的自动证明[M].中国初等数学研究,2011(3):24.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部