期刊文献+

一种新型非线性滤波的多特征融合跟踪算法

Multi-feature fusion tracking based on new nonlinear filtering
下载PDF
导出
摘要 为有效解决非线性系统的状态估计问题,提出一种新型非线性滤波算法。该算法通过在积分卡尔曼滤波中引入修正因子,对积分点进行优化重组,并采用修正后的积分卡尔曼滤波产生优选建议分布函数,较好地克服了粒子退化现象。在新算法的框架内,利用颜色和运动边缘特征作为观测模型进行视频目标跟踪,并通过D-S证据理论的方法进行权值融合,较好地克服了单一颜色特征在姿态改变、相似背景遮挡等情况下跟踪稳定性较差的问题。实验表明本方法对复杂条件下的目标跟踪问题在保持较强鲁棒性的同时,跟踪精度提升了近32%。 This paper proposed a new kind of nonlinear filtering for the state estimation of nonlinear systems.The proposed algorithm based on quadrature Kalman filter by using integral pruning factor,which optimized and reorganized the integration point.New algorithm overcame the particle degeneration phenomenon well.In the improving particle filter framework,this algorithm used color and motion edge character as observation model,and fused feature weights through the D-S evidence theory.The proposed method effectively avoided bad robust questions rosed by the single color feature in the posture change and similar feature occlusion.Experiment results indicate that the proposed method is more robust to track object in complex scene and the tracking precision ascends nearly 32%.
作者 亓洪标 李伟
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1737-1740,1746,共5页 Application Research of Computers
关键词 粒子滤波 积分卡尔曼滤波 目标跟踪 多特征融合 D-S证据理论 particle filter quadrature Kalman filter object tracking multi-feature fusion D-S evidence theory
  • 相关文献

参考文献16

  • 1MORRIS B T,TRIVEDI M M.Contextextual activity visualization from long-term video observations[J].IEEE Intelligent Systerms,2010,25(3):50-62.
  • 2LIU P R,MENG M Q H,LIU P X,et al.Optical flow and active contour for moving object segmentation and detection in monocular ro-bot[C]//Proc of IEEE International Conference on Robotics and Au-tomation.Washigton DC:IEEE Computer Society,2006:4075-4080.
  • 3KIM B G,PARK D J.Unsupervised video object segmentation and tracking based on new edge features[J].Pattern Recognition Let-ters,2004,25(15):1731-1742.
  • 4BAKER S,MATTHEWS I.Lucas-Kanade20years on:a unifying framework[J].International Journal of Computer Vision,2004,56(3):221-255.
  • 5MANDELLOS N A,KERAMITSOGLOU I,KIRANOUDIS C T.A background subtraction algorithm for detecting and tracking vehicles[J].Expert Systems with Application,2011,38(3):1619-1631.
  • 6DU W,PIATER J.A probabilistic approach to integrating multiple cues in visual tracking[C]//Proc of the10th Europe on Conference on Computer Vision.Berlin:Springer-Verlag,2008:225-238.
  • 7DOUCET A,GODSILL S J,ANDRIEU C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 8JULIER S J,UHIMANN J K.Unscented filtering and nonlinear esti-mation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 9Chunlincl Wu,Chongzhao Han.Quadrature Kalman particle fitler[J].Journal of Systems Engineering and Electronics,2010,21(2):175-179. 被引量:4
  • 10ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for on line non-linear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.

二级参考文献28

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2钟小品,薛建儒,郑南宁,平林江.基于融合策略自适应的多线索跟踪方法[J].电子与信息学报,2007,29(5):1017-1022. 被引量:21
  • 3J. H. Kotecha, E M. Djuric. Gaussian particle filtering. IEEE Trans. on Signal Processing, 2003, 51(10): 2592-2601.
  • 4N. J. Gordon, D. J. Salmond, A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. of Radar and Signal Processing, 1993, 140(2): 107-113.
  • 5E. Cuevas, D. Zaldivar, R. Rojas. Particle filter in vision tracking. Berlin: Freie University, Institute for Informatics, 2005: 1-11.
  • 6E R. A. Silva, M. G. S. Bruno. A density-assisted particle filter for mobile robot localization with uncertain environment MAP. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2007, (3): 1205-1208.
  • 7F. Gustafsson, F. Gunnarsson, N. Bergman. Particle filters for positioning, navigation, and tracking. IEEE Trans. on Signal Processing, 2002, 50(2): 425437.
  • 8R. van der Merwe, A. Doucet, N. de Freitas, et al. The unscented particle filter. Technical Report of the Cambridge University Engineering Department, UK: Cambridge University Press, 2000: 1-45.
  • 9A. de Freitas. On sequential simulation-based methods for bayesian filtering. Technical Report of the Cambridge University Engineering Department Cambridge, UK: Cambridge University Press, 1998: 1-26.
  • 10S. J. Juliet, J. K. Uhlmann. Unscented filtering and nonlinear estimation. Proc. of the IEEE, 2004, 92(3): 401422.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部