期刊文献+

面向普适环境的上下文感知中间件研究 被引量:2

Research on context-aware middleware for ubiquitous environments
下载PDF
导出
摘要 针对普适环境下上下文感知计算需求,引入广义模型化理论,建立了一种面向通用环境资源的上下文信息数据模型;在此基础上,提出了上下文感知中间件体系框架,并详细阐述了其构件化的实施方案。该中间件平台的上下文获取层能够封装各类感知器捕获的资源信息,中间处理层负责信息的管理、推理和聚合,基于门面模式的上下文访问层提供同步和异步相结合的上下文信息统一访问入口。通过实验测试了平台的时间损耗,表明该中间件可提供通用的上下文感知服务且具有较好的系统性能。 According to the requirement of context-aware computing in ubiquitous environments,this paper proposed a context information data model based on generalized modeling theory with an extensible and multi-leveled hierarchical structure.Moreover,this paper established the context-aware middleware based on the data model which contained context acquisition layer,context handler layer and context access layer.Acquisition layer was used for capturing context information;Handler layer was responsible for context fusion;Access layer implemented the convenient context information access mechanism.Finally,experimental results show that the context-aware middleware has better performance on providing context-aware service.
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1747-1750,1760,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60973065) 国家"863"计划资助项目(2009AA01Z119)
关键词 上下文感知 普适计算 上下文建模 中间件 context-aware ubiquitous computing context modeling middleware
  • 相关文献

参考文献10

  • 1ARDISSONO L,GOY A,PETRONE G.A framework for the develo-pment of distributed,context-aware adaptive hypermedia applications[C]//Proc of the 5th International Conference on Adaptive Hyperme-dia and Adaptive Web-based Systems.Berlin:Springer-Verlag,2008:259-262.
  • 2李蕊,李仕伦.面向上下文感知计算的贝叶斯网络结构自学习算法的研究[J].计算机应用研究,2010,27(1):107-110. 被引量:4
  • 3HRISTOVA A,BERNARDOS A M,CASAR J R.Developing an am-bient home care system:context toolkit-based design and implementa-tion[C]//Proc of the 9th International Conference on Parallel andDistributed Computing,Applications and Technologies.WashingtonDC:IEEE Computer society,2008:455-461.
  • 4Van KRANENBURG H,BARGH M S,IACOB S,et al.A contextmanagement framework for supporting context-aware distributed appli-cations[J].IEEE Communications Magazine,2006,44(8):67-74.
  • 5SEKKAS O,ANAGNOSTOPOULOS C D,HADJIEFTHYMIADES S.Context fusion through imprecise reasoning[C]//Proc of IEEE Inter-national Conference on Pervasive Services.Washington DC:IEEEComputer Society,2007:88-91.
  • 6徐序彦,等.大系统控制论[M].北京:北京邮电大学出版社,2005.
  • 7ETZION O,NIBLETT P.Event processing in action[M].Stamford:Manning Publications,2010:61-85.
  • 8刘家红,吴泉源.一个基于事件驱动的面向服务计算平台[J].计算机学报,2008,31(4):588-599. 被引量:45
  • 9ROY N,GU Tao,DAS S K.Supporting pervasive computing applica-tions with active context fusion and semantic context delivery[J].Pervasive and Mobile Computing,2010,6(1):21-42.
  • 10YUE Yang,AI Dong-mei,ZENG Guang-ping.A dynamic evolutionframework for SoftMan system[C]//Proc of International Conferenceon Computer Application and System Modeling.Piscataway:IEEEPress,2010:262-266.

二级参考文献40

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2PEARL J. Probabilistic reasoning in intelligent systems: network of plausible inference[ M ]. San Mateo,CA : Morgan Kaufmann Publishers, 1988.
  • 3BAUER E, KOLLER D, SINGER Y. Update rules for parameter estimatlon in Bayesian networks [ C ]//Proc of the 13th Annual Conference on Uncertainty in A1 (UAI). San Mateo, California: Morgan Kaufmann Publishers, 1997:3-13.
  • 4BEINLICH I A, SUERMONDT H J, CHAVEZ R M, et al. The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks [ C ]//Proc of the 2nd European Conference on Artificial Intelligence in Medicine. 1989: 247-256.
  • 5BLOEMEKE M, VALTORA M. A hybrid algorithm to compute marginal and joint beliefs in Bayesian networks and its complexity [ C ]// Proc of the 14th Annual Conference on Uncertainty in Artificial Intelligence. San Mateo, California: Morgan Kaufmann Publishers, 1998: 208- 214.
  • 6CHICKERING D, HECKERMAN D. Efficient approximation for the marginal likelihood of incomplete data given a Bayesian network [ J ]. Machine Learning, 1996,29(2-3 ) : 181-212.
  • 7CHICKERING D, MEEK C. Finding optimal Bayesian networks [ C ]// Proc of the 18th Conference on Uncertainty in Artificial Intelligence. San Mateo, California: Morgan Kaufnmnn Publishers, 2002:94-102.
  • 8COOPER G F. A Bayesian method for causal modeling and discovery under selection[ C ]//Proc of the 16th Conference on Uncertainty in Artificial Intelligence. San Mateo, California: Morgan Kaufmann Publishers, 2000:98-106.
  • 9FRIEDMAN N. The Bayesian structural EM algorithm[ C ]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Mateo, California: Morgan Kaufmann Publishers, 1998: 129-138.
  • 10FRIEDMAN N, MURPHY K, RUSSELL S. Learning the structure of dynamic probabilistic networks[ C]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Mateo, California: Morgan Kaufmann Publishers, 1998.

共引文献48

同被引文献27

  • 1徐光祐,陶霖密,史元春,张翔.普适计算模式下的人机交互[J].计算机学报,2007,30(7):1041-1053. 被引量:48
  • 2Clark D D.Partridge C.Ramming CJ .et al. A knowl?edge plane for the internet[CJ II SIGCOMM. New York. USA: ACM Press. 2003.
  • 3Souihi S. Mellouk A. Knowledge dissemination for au?tonomic network[CJ II IEEE International Conference on Communications. Kyoto.Japan: IEEE Computer Society Press. 20 II.
  • 4Li Q.Quax P.Luyten K.et al. A cognitive network for intelligent environments[CJl12012 Sixth Interna?tional Conference on Innovation Mobile and Internet Services in Ubiquitous Computing. Washington. DC. USA:IEEE Computer Society Press.2012.
  • 5Xie G G.Sun Y.Li Z Y .et al. Service-oriented future internet architecture[CJ II IEEE INFOCOM. Shang?hai. China: IEEE Computer Society. 20 II.
  • 6Mulvenna M. Zambonelli F. Curran K. et al. Knowl?edge networks[CJ II Santiago. Chile: International Federation for Information Processing. 2006.
  • 7Hinckley K. PierceJ ? Sinclair M. et al , Sensing tech?niques for mobile interactionj C] II Proceedings of the 13th annual ACM symposium on User Interface Soft?ware and Technology. New York. USA: ACM Press. 2000.
  • 8Perich F. A service for aggregating and interpreting contextual information[RJ. Palo Alto: Hewlett Pack?ard Labs.2002.
  • 9Cabri G. Leonardi L. Mamei M. et al. Location-de?pendent services for mobile users[] J. IEEE Trans?actions on Systems. Man and Cybernetics. Part A: Systems and Humans.2003.33(6) :667.
  • 10Chen H. An intelligent broker architecture for per?vasive context-Aware systemsj D]. Baltimore. USA: University of Maryland. 2004.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部