期刊文献+

各向异性扩散的遥感图像边缘增强方法 被引量:1

Edge enhancement using fuzzy anisotropic diffusion for remote sensing image
下载PDF
导出
摘要 为解决遥感图像边缘增强过程中辨识弱边缘和噪声的问题,提出一种改进的模糊各向异性边缘增强方法。根据非下采样轮廓波变换系数分布特征,获得像素几何结构信息;并基于各像素在不同子带的系数分布特征和噪声方差,分析其均值和最大值的模糊隶属度;利用模糊推理计算扩散系数,更好地控制各向异性扩散过程。实验结果显示,该方法具有更好的边缘增强和抑噪性能,能有效地辨识弱边缘和降低时间复杂度。 To solve the problem of distinguishing noise from weak edges,this paper proposed a novel fuzzy anisotropic diffusion approach for remote sensing image edge enhancement.At first,it gathered the geometrical information pixel by pixel from the NSCT coefficients.Then,it obtained the mean and max fuzzy membership values by analyzing the distribution of coefficients and noise variance in different sub-bands.At last,calculated the diffusion coefficients through fuzzy inference and embedded it into anisotropic diffusion to better control on the diffusion processing.Experiments show that the proposed method has better edge enhancement and de-noised performance and efficiently preserve the weak edges and reduce the time complexity.
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1993-1996,共4页 Application Research of Computers
基金 中央高校基本科研业务费资助项目(CDJXS10180004) 中国博士后科学基金资助项目(20070420711) 重庆市自然科学基金资助项目(CSTC2008BB2191)
关键词 遥感图像 各向异性扩散 模糊推理 非下采样轮廓波 边缘增强 remote sensing image anisotropic diffusion(AD) fuzzy inference nonsubsampled contourlet edge enhancement
  • 相关文献

参考文献3

二级参考文献23

  • 1王新增,严国莉.基于自适应门限滤波的红外弱小运动目标检测方法[J].红外,2006,27(8):13-15. 被引量:3
  • 2DOUCET A, GODS1LL S J, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[ J]. Statistics and Computing, 2000,3 0 ( 3 ) : 197 - 208.
  • 3COMANICIU D, RAMESH V, MEER P. Real-time tracking of non- rigid objects using mean shift [ C ]//Proc of IEEE Cnnference on Computer Vision and Pattern Recognition. 2000 : 142-149.
  • 4YU Yong, GUO Lei. Infrared small moving target detection using fac- et model and particle filter[ C]//Proc of Congress on Image and Signal Processing. 2008:206- 210.
  • 5DU Xiao-feng, YANG Dun-xu, L[ Cui-hua, et al. A novel approach to SVD-based image filtering improvement [ C ]//Proc of International Conterence on Computer Science and Software Engineering. Washington DC: IEEE Computer Society,2OO8:133-136.
  • 6SAI,MOND D J, BIRCH H, A particle filter for track-before-detect [ C ]//Proe of American Control Conference. 2001 : 3755- 3760.
  • 7ROLLASON M, SALMONI) D. A particle filter for track-before-detect of a target with unknown amplitude[ C]//Proe of IEEE Conference on Target Tracking: Algorithms and Applications. 2001:16-17.
  • 8KONSTANTIN1DES K, NATARAJAN B, YOVANOF G S, et al. Noise estimation and fihering using block-based singular value decomposition [J]. IEEE Trans on Image Processing,1997,6(3):479-483.
  • 9CASTLEMAN K R. Digital image processing[ M ]. New Jersey : Prentice Hall Inc. , 1996:359- 365.
  • 10YOU Y L, KAVEH M. Fourth-order partial differential equations for noise removal [ J ]. IEEE Trans on Image Processing, 2000, 9 (10) : 1723-1730.

共引文献10

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部