期刊文献+

粘性导电流体在磁场作用下流过多孔通道时传热传质振荡流的数值解--用于病理状态动脉中血液的流动

Numerical Solution of Heat and Mass Transfer Problem in Oscillatory Flow of a Viscous Electrically Conducting Fluid Through a Porous Channel Subjected to a Magnetic Field:Applications to Blood Flow in Arteries in a Pathological State
下载PDF
导出
摘要 当血管内壁出现多孔性结构时,流过多孔性血管的血液将作不稳定的MHD流动.研究血液在其中的传热传质问题,考虑了与时间相关的渗透率和振荡引起的吸入速度,并数值地求解该问题.对分析中出现的参数取不同数值时,图形给出了速度、温度、浓度场,以及表面摩擦因数、Nusselt数和Sherwood数的计算结果.研究表明,血液流动受磁场和Grashof数的影响明显. A problem was motivated towards studying heat and mass transfer in the unsteady MHD flow of blood through a porous vessel,when the lumen of the vessel had turned into a porous structure.Consideration of time-dependent permeability and oscillatory suction velocity had been made.The problem was solved numerically.The computational results are presented graphically for the velocity,temperature and concentration fields as well as the skin friction co-efficient,Nusselt number and Sherwood number for various values of the parameters involved in the analysis. It was revealed that the flow is appreciably influenced by the presence of a magnetic field and also by the value of the Grashof number.
出处 《应用数学和力学》 CSCD 北大核心 2012年第5期614-627,共14页 Applied Mathematics and Mechanics
基金 印度科学与工业协会(CSIR)资助项目
关键词 传质 辐射 吸入速度 表面摩擦 mass transfer radiation suction velocity skin-friction
  • 相关文献

参考文献46

  • 1Ramamurthy G,Shanker B.Magnetohydrodynamic effects on blood through a porous channel[J].Med Biol Eng Comput,1994,32(6):655-659.
  • 2Mustapha M,Amin N,Chakravarty S,Mandal P K.Unsteady magnetohydrodynamic bloodflow through irregular multistenosed arteries[J].Com puters in Biology and Medicine,2009,39(10):896-906.
  • 3Mekheimer Kh S.Peristaltic flow of blood under effect of magnetic field in a non-uniformchannel[J].Appl Math Com put,2004,153(3):763-777.
  • 4J·C·密斯让,A·辛哈,G·C·斯特,吴承平,张禄坤.生物磁粘弹性流体的流动:应用动脉电磁过热评估血液的流动,癌症治疗进程[J].应用数学和力学,2010,31(11):1330-1343. 被引量:5
  • 5Misra J C,Sinha A,Shit G C.Theoretical analysis of blood flow through an arterial segmenthaving multiple stenoses[J].J Mech Med Biol,2008,8(2):265-279.
  • 6Misra J C,Kar B K.Momentum integral method for studying flow characteristics of bloodthrough a stenosed vessel[J].Biorheol,1989,26(1):23-25.
  • 7Misra J C,Pal B,Gupta A S.Hydrodynamic flow of a second-grade fluid in a channel-someapplications to physiological systems[J].Math Model Meth Appl Sci,1998,8:1323-1342.
  • 8Misra J C,Patra M K,Misra S C.A non-Newtonian fluid model for blood flow through arter-ies under the stenotic conditions[J].J Biom ech,1993,26(9):1129-1141.
  • 9Misra J C,Roychoudhuri K.A study on the stability of blood vessels[J].Rheol Acta,1982,21(3):341-346.
  • 10Misra J C,Roychoudhuri K.Effect of initial stresses on the wave propagation in arteries[J].J Math Biol,1983,18(1):53-67.

二级参考文献63

  • 1Andersson H I, Valnes O A. Flow of a heated ferrofluid over a stretching sheet in the presence of magnetic dipole[J]. Acta Mech, 1998, 128(1/2) : 39-47.
  • 2Fukada E, Kaibara M. Viscoelastic study of aggregation of red blood cells [ J ]. Biorheology, 1980, 17(1/2) : 177-182.
  • 3Thurston G B. Viscoelasticity of human blood[J]. Biophysical J, 1972, 12(9) : 1205-1217.
  • 4Stoltz J F, Lucius M. Viscoelasticity and thixotropy of human blood[J]. Biorheology, 1981, 18 (3/6) : 453-473.
  • 5Misra J C, Shit G C. Biomagnetic viscoelastic fluid flow over a stretching sheet [ J ]. Appl Math Comput, 2009, 210 (2) : 350-361.
  • 6Misra J C, Shit G C. Flow of a biomagnetic visco-elastic fluid in a channel with stretching walls[J]. Trans ASME JAppl Mech, 2009, 76 (6) : 061006-1.
  • 7Misra J C, Shit G C, Rath H J. Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to hemodynamics [ J ]. Computers and Fluids, 2008, 37: 1-11.
  • 8Misra J C, Pal B, Gupta A S. Hydromagnetic flow of second-grade fluid in a channel: some applications to physiological systems[ J]. Math Model and Methods in Appl Sci, 1998, 8(8) : 1323-1342.
  • 9Pal B, Misra J C, Pal A, Gupta A S. Hydromagnetic flow of a viscoelastic fluid in a parallel plate channel with stretching walls[ J]. Ind J Maths, 1999, 41 : 231-247.
  • 10Dunn J E, Fosdick R L. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade[J]. Arch Rational Mech Anal, 1974,56(3) : 119-252.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部