期刊文献+

基于混合粒子滤波的温控传感器故障诊断方法 被引量:4

Temperature Control Sensor Fault Diagnosis Method Based on Hybrid Particle Filtering
下载PDF
导出
摘要 标准粒子滤波算法的精度不高、鲁棒性差,难以满足电厂温度传感器故障诊断的要求。针对该问题,提出一种新的适用于温度传感器故障检测的智能粒子滤波算法。该算法采用人工鱼群的全局收敛性找到满意的解域,利用粒子群算法引导粒子向高斯然区域移动,提高滤波精度。实验结果证明,该算法精度高、鲁棒性强,可以有效地应用于电厂温控系统故障的诊断。 Particle filtering is not precise and has weak robustnest, and it is not able to meet the requirement of fault diagnosis of temperature control system in power plant. To solve these problems, a new particle filtering algorithm based on Hybrid algorithm is proposed. The algorithm looks for satisfactory solution space with artificial fish swarm algorithm, later the particles move to the high likelihood region with Particle Swarm Optimization(PSO) algorithm. It raises the accuracy. Simulation results show that this algorithm has the high precision, strong robustness and it is suitable for fault diagnosis of temperature control system.
出处 《计算机工程》 CAS CSCD 2012年第9期162-165,共4页 Computer Engineering
基金 高等学校博士学科点专项科研基金资助项目(200802881017)
关键词 粒子滤波 人工鱼群算法 微粒群优化 收敛性 温度传感器 故障诊断 Particle Filtering(PF) Artificial Fish Swarm Algorithm(AFSA) Particle Swarm 0ptimization(PS0) convergence temperaturesensor fault diagnosis
  • 相关文献

参考文献10

二级参考文献49

共引文献1004

同被引文献26

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3杜正聪,唐斌,李可.混合退火粒子滤波器[J].物理学报,2006,55(3):999-1004. 被引量:23
  • 4Kotecha J H,Djuric P M.Gaussian particle filtering[J].IEEE Trans-actions on Signal Processing,2003,51(10):2592-2601.
  • 5Gordon N J,Salmond D J,Smith A FM.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proceedings-F,1993,140(2):107-113.
  • 6Doucet D,Godsill S,Andrieu C.On sequential Monte Carlo samplingmethods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 7Liu J S,Chen R.Sequential Monte Car lo methods for dynamical sys-tems[J].Journal of the American Statistical Association,1998,93(5):1032-1044.
  • 8Liu J S,Chen R.Blind deconvolution via sequential imputation[J].Journal of the American Statistical Association,1995,90(2):567-576.
  • 9HAN Ytrbing. A rao-blackwellized particle filter for adaptive beam- forming with strong interference [J]. IEEE Trans. on Signal Pro- cessing, 2012, 60(6): 2952-2961.
  • 10OLSSON Jimmy, RYDI:N Tobias. Rao-blackwellization of par- ticle Markov chain Monte Carlo methods using forward fil- tering backward sampling [J]. IEEE Trans. on Signal Processing, 2011, 59(10): 4606-4619.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部