摘要
标准粒子滤波算法的精度不高、鲁棒性差,难以满足电厂温度传感器故障诊断的要求。针对该问题,提出一种新的适用于温度传感器故障检测的智能粒子滤波算法。该算法采用人工鱼群的全局收敛性找到满意的解域,利用粒子群算法引导粒子向高斯然区域移动,提高滤波精度。实验结果证明,该算法精度高、鲁棒性强,可以有效地应用于电厂温控系统故障的诊断。
Particle filtering is not precise and has weak robustnest, and it is not able to meet the requirement of fault diagnosis of temperature control system in power plant. To solve these problems, a new particle filtering algorithm based on Hybrid algorithm is proposed. The algorithm looks for satisfactory solution space with artificial fish swarm algorithm, later the particles move to the high likelihood region with Particle Swarm Optimization(PSO) algorithm. It raises the accuracy. Simulation results show that this algorithm has the high precision, strong robustness and it is suitable for fault diagnosis of temperature control system.
出处
《计算机工程》
CAS
CSCD
2012年第9期162-165,共4页
Computer Engineering
基金
高等学校博士学科点专项科研基金资助项目(200802881017)
关键词
粒子滤波
人工鱼群算法
微粒群优化
收敛性
温度传感器
故障诊断
Particle Filtering(PF)
Artificial Fish Swarm Algorithm(AFSA)
Particle Swarm 0ptimization(PS0)
convergence
temperaturesensor
fault diagnosis