期刊文献+

大鱼际掌纹识别系统设计与实现 被引量:2

Design and Implementation of Thenar Palmprint Recognition System
下载PDF
导出
摘要 开发一种大鱼际掌纹识别系统。该系统以大鱼际掌纹在变态反应性疾病医学诊断中特应征4级分类为依据。主要功能是在采集到掌纹源图像的情况下,能快速地给出掌纹图像中大鱼际掌纹区域所属的级别,即大鱼际掌纹量化识别,以达到辅助临床医学专家进行诊断的目的,分级采用基于灰度共生矩阵和支持向量机的分类方法。测试结果表明,该系统可以实现大鱼际掌纹的特征提取和分类,精度和效果基本满足医学辅助诊断和研究的要求。 This paper designs a thenar palmprint recognition system. In the diagnosis of allergic diseases, thenar palmprint can be divided into four grades based on its special candidates. This system is developed mainly depend on the above, and its main function is able to show the grade of the thenar palmprint quickly in the case of the palm picture is given, and in order to achieve the purpose of supporting clinical experts to diagnose. The classification of Gray Level Co-occurrence Matrix(GLCM) and SVM are used in this system to realize the systematic. Test results show that this system can realize the feature extraction and classification of thenar palmprint, and the precision and effect can make demand of medical aid diagnosis and research.
出处 《计算机工程》 CAS CSCD 2012年第9期170-173,共4页 Computer Engineering
基金 国家自然科学基金资助项目“大鱼际掌纹特应征与5个哮喘易感基因单核苷酸多态性的关联分析”(30873315) 山东省自然科学基金资助项目(ZR2009GM007) 山东省高校科技计划基金资助项目(J09LG12) 青岛市卫生局科技计划基金资助项目(2009-zyz001)
关键词 大鱼际掌纹 分类 灰度共生矩阵 支持向量机 纹理 thenar palmprint classification Gray Level Co-occurrence Matrix(GLCM) Support Vector Machine(SVM) texture
  • 相关文献

参考文献7

  • 1徐宁,王宽全,张大鹏.基于神经网络的掌纹诊病专家系统[J].计算机应用研究,2001,18(2):4-6. 被引量:16
  • 2周兆山,王燕青,刘治香,姜洪玉,陶红卫,李莉莎,韩萍,陆学超,宁天芳.大鱼际掌纹形态特征与哮喘的相关性研究[J].山东中医药大学学报,2004,28(2):114-116. 被引量:38
  • 3Zhang D,Kong Wai-Kin,Yon J,et al.Online Palmprint Ident-ification[J].IEEE Trans.on Pattern Analysis and MachineIntelligence,2003,25(9):1041-1050.
  • 4Zhu Xijun,Liu Dazhuan,Zhang Qiulin.Research of Technologyfor Thenar Palmprint Locating and Segmentation[C]//Proc.ofInternational Workshop on Information Security and Application.[S.l.]:IEEE Press,2009:601-604.
  • 5孙蕾,温有奎,李丙春.图像增强算法与评价方法研究[J].计算机工程,2007,33(8):168-169. 被引量:15
  • 6Zhang J,Marszalek M,Lazebnik S,et al.Local Features andKernels for Classification of Texture and Object Categories——AComprehensive Study[J].International Journal of Computer Vision,2007,73(2):213-238.
  • 7Haralick R M,Shanmugam K,Dinstein I.Texture Features forImage Classification[J].IEEE Trans.on Systems,Man andCybernetics,1973,3(6):610-621.

二级参考文献9

  • 1沈自尹,胡国让,许得盛,陈伟华,张玲娟.补肾法预防哮喘的变态和非变态反应机理研究[J].中西医结合杂志,1989,9(2):82-84. 被引量:61
  • 2许得盛,沈自尹,王文健,陈伟华.扶正法缓解哮喘发作的作用探讨[J].中国中西医结合杂志,1996,16(4):198-200. 被引量:24
  • 3林郎晖.手纹与诊病[M].呼和浩特:内蒙古科学技术出版社,2000.36.
  • 4SakelIaropoulos P, Lena C. An Adaptive Wavelet-based Method for Mammograpbic Image Enbancement[C]//Proc. of the I4^th IEEE International Conference on Digital Signal Processing.2002.
  • 5Sakellaropoulos P, CostaridouL. A Wavelet-based Spatially Adaptive Method for Mammographic Contrast Enhancement[J].Physics in Medicine Biology, 2003, 48(6): 787-803.
  • 6Wirth M, Fraschini M, Lyon J. Contrast Enhancement of Microcalcifications in Mammograms Using Morphological Enhancement and Non-flat Structuring Elements[C]//Proc. of the 17^th IEEE Symposium on Comouter-based Medical Systems. 2004.
  • 7Singh S, Bovis K. An EvaIuation of Contrast Enhancement Techniques for Mammographic Breast Masses[J]. IEEE Transactionson on Information Technology in Biomedicine, 2005, 9(1).
  • 8Heinlein P, Drexl J, Schneider W. Integrated Wavelets for Enhancement of in Microcalcification Digital Mammography[J].IEEE Transaction on Medical Imaging, 2003, 22(3): 402-413.
  • 9张冰,张基宏.基于神经网络的专家规则推理系统[J].模式识别与人工智能,1998,11(4):365-369. 被引量:3

共引文献65

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部