期刊文献+

基于独立分量分析和神经网络的钢结构损伤识别方法 被引量:3

Method of steel structural damage detection based on ICA and probabilistic neural network
下载PDF
导出
摘要 为了有效剔除钢结构振动信号中的噪声,提取用于损伤识别的特征量,采用独立分量分析方法分离统计独立信号,同时得到表征结构损伤状态的混合矩阵,然后将混合矩阵作为特征量输入至神经网络进行训练,最后将训练好的神经网络作为分类器进行结构损伤识别。在冲击载荷作用下,针对钢框架结构模型进行了不同损伤部位的振动实验,结果表明:基于独立分量分析和神经网络的损伤识别方法具有较高的识别率和可重复性,而且实现简单,在结构损伤识别领域具有较大的应用潜力。 In order to effectively remove noises from vibration signals in the steel structure and extract the eigenvalue used for damage detection,the independent component analysis(ICA) was first used for separating and counting independent signals to obtain the mixed matrix representing the nature of structural damage.Then the artificial neural network(ANN) with the inputs of the mixed matrix was trained.Finally,the trained neural network as a classifier was applied to structural damage identification.Under the impact of the loads,the model of steel frame structure went through vibration tests at different damage positions.The experimental results demonstrate that the method of damage detection based on ICA-ANN not only has high identification rate and repeatability,but also is easy to implement and that the method has a great potential of application in the field of structural damage detection.
出处 《海军工程大学学报》 CAS 北大核心 2012年第2期57-61,共5页 Journal of Naval University of Engineering
基金 国家部委基金资助项目(BY208L26)
关键词 独立分量分析 神经网络 损伤识别 钢结构 independent component analysis neural network damage detection steel structure
  • 相关文献

参考文献9

  • 1姜绍飞.基于神经网络的结构优化与损伤检测[M]北京:科学出版社,2002.
  • 2张育智,何伟,李乔,单德山.用于结构损伤识别的神经网络输入选取规则探究[J].四川建筑科学研究,2010,36(1):63-67. 被引量:4
  • 3周开利;康耀红.神经网络模型及其MATLAB仿真程序设计[M]北京:清华大学出版社,2005.
  • 4HYV(A)RINEN A,KARHUNEN J,OJA E. Independent Component Analysis[M].New York:John Wiley and Sons,Inc,2001.
  • 5CHAWLA M P S,VERMA H K,KUMAR V. Artifacts and noise removal in electrocardiograms using independent component analysis[J].International Journal of Cardiology,2008,(02):278-281.doi:10.1016/j.ijcard.2007.06.037.
  • 6YU Sung-nien,CHOU Kuan-to. Integration of independent component analysis and neural networks for ECG beat classification[J].Expert Systems with Applications,2008,(04):2841-2846.
  • 7ZANG C,FRISWELL M I,IMREGUN M. Structural damage detection using independent component analysis[J].Structural Health Monitoring,2004,(01):69-83.doi:10.1177/1475921704041876.
  • 8郭峰,任兴民,刘婷婷.独立分量分析和概率神经网络在机械故障诊断中的应用[J].西安工业大学学报,2009,29(5):490-494. 被引量:5
  • 9KUO Shye-chorng,LIN Cheng-jian,LIAO Jan-ray. 3D reconstruction and face recognition using kernel-based ICA and neural networks[J].Expert Systems with Applications,2011,(05):5406-5415.

二级参考文献20

共引文献6

同被引文献27

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部