期刊文献+

一类不动点与变分包含问题的公共点的迭代逼近

Iterative Approximation for the Common Point of Fixed Point and Variational Inclusion Problems
下载PDF
导出
摘要 用一种新的迭代算法来逼近一类不动点和变分包含问题的解,简化了迭代序列,证明了建立的这一迭代序列强收敛到这两个问题的公共解. A new iterative algorithm was adopted to approximate the solution for a class of fixed point and variational inclusion problems,which simplifies its iterative sequences and proves the common solution of the two problems established which the iterative sequence strongly converges to.
作者 胡青龙
出处 《内江师范学院学报》 2012年第4期6-9,共4页 Journal of Neijiang Normal University
关键词 不动点 变分包含 公共点 迭代逼近 fixed points varational inclusion common point iterative approximation
  • 相关文献

参考文献10

  • 1Hideaki I,Wataru T.Strong convergence theorems formonexpansive mappings snd inverse-strongly monotonemappings[J].Nonlinear Analysis:Theory,Methods&Applications,2005,61(3):340-350.
  • 2Carlos M Y,Xu H K.Strong convergence of the CQmethod for fixed point iteration iteration processes[J].Nonlinear Analysis:Theory,Methods&Applications,2006,64(11):2400-2411.
  • 3Daniilidis A,Hadjisavvas N.Coercivity conditions andvariational Inequalities[J].Mathematical Program-ming,1999,86(2):433-438.
  • 4Crouzeix J P.Pseudomonotone variational inequalityproblems:Existence of Solutions[J].MathematicalProgramming,1997,78(3):305-314.
  • 5毛秀珍,何诣然.拟单调广义向量变分不等式[J].四川师范大学学报(自然科学版),2007,30(2):134-137. 被引量:9
  • 6李克俊.关于一类多值映射变分不等式组[J].四川师范大学学报(自然科学版),2003,26(2):148-151. 被引量:4
  • 7李凤莲,丁协平.变分不等式解集性质的刻画[J].四川师范大学学报(自然科学版),2005,28(5):526-528. 被引量:3
  • 8Nakajo K,Takahashi W.Strong and weak convergencegheorems by an improved splitting method[J].Com-munications on Applied Nonlinear Analysis.2002,9(1):100-107.
  • 9Noor M A.Equivalence of variational inclusions withresolvent equations[J].Nonlinear Analysis:Theory,Methods&Applications,2000,41(7/8):963-970.
  • 10Ya-Ping Fang,Nan-jing Huang.H-Accretive operatorsand relolvent opera-tor technique for solving variationalinclusions in Banach spaces[J].Applied MathematicsLetters,2004,17(6):647-653.

二级参考文献22

  • 1屈德宁.Banach空间中的一类非线性混合似变分不等式[J].四川师范大学学报(自然科学版),2005,28(1):19-23. 被引量:5
  • 2Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[J]. Mathematical Programming, 1990,48:161 ~ 220.
  • 3Facchinei F, Pang, J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York: Springer-Verlag,2003.
  • 4Crouzeix J P. Pseudomonotone variational inequality problems: existence of solutions[ J]. Mathematical Programming, 1997,78: 305 ~ 314.
  • 5Zǎlinescu C. Convex Analysis in General Vector Spaces[ M]. River Edge:World Scientific Publishing Co. Inc,2002.
  • 6Rockafellar R T. Convex Analysis[ M ]. Princeton: Princeton University Press, 1970.
  • 7Daniildis A, Hadjisawas N. Coercivity conditions and variational inequalities[J]. Mathematical Programming, 1999,86:433 ~ 438.
  • 8Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. New York:John Wiley & Sons Inc,1984.
  • 9Karamardian S. Complementarity problems over cones with monotone and pseudomonotone maps[ J ]. Journal of Optimization Theory and Applications, 1976,18: 445 ~ 454.
  • 10Verma R U. Projection, algorithms and a new system of nonlinear variational inequalities[J]. J Comput Math Appl,2001.41(7):1025~1031.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部