期刊文献+

一类拟线性方程三角形式不变子空间的研究 被引量:1

The study of trigonometric invariant subspace to a class of quasilinear equation
下载PDF
导出
摘要 讨论一类含有F[u]=sum (aijDixuDjxu) from i+j=k形式的拟线性方程所满足的三角形式的不变子空间.将假设的正余弦形式的不变子空间代入演化方程,对不同的k值进行分析对比.证明了对于这类方程,当k为偶数时,若方程满足一定维数的余弦形式的不变子空间,则必满足余弦/正弦形式的不变子空间. To study the kind of quasilinear equations which with the form of F[u]=sum (aijDixuDjxu) from i+j=k.Utilize the trigonometric invariant subspace on k with different values to analysis the different coefficient conditions.When k is even,the equations allow the cos/sin-invariant subspace if this equations allow cos-invariant subspace.
出处 《纺织高校基础科学学报》 CAS 2012年第1期48-50,共3页 Basic Sciences Journal of Textile Universities
关键词 二次算子 不变子空间 三角形式不变子空间 精确解 quadratic operator of the second order invariant subspace trigonometric invariant subspaceexact solutions
  • 相关文献

参考文献9

  • 1QU C Z,LI L,DON L Z.Exact solutions and generalized conditional symmetries to(n+1)-dimensional nonlinear diffu-sion equations with source term[J].Physcics Letters A,2005,343:139-147.
  • 2唐亚宁,徐伟,李伟.推广的BBM方程行波解[J].西北大学学报(自然科学版),2006,36(4):525-528. 被引量:5
  • 3GALAKTIONOV V A.Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlineari-ties[J].Proc Roy Soc Endin Sect A,1995,125:225-246.
  • 4GALAKTIONOV V A,SVISHCHEVSKII S R.Exact solutions and invariant subspaces of nonlinear partial differentialequations in mechanics and physics[M].London:Boca Raton,2007.
  • 5SVISHCHEVSKII S R.Lie backlund symmetries of linear ODEs and generalized separation of variables in nonlinear e-quations[J].Phys Lett A,1995,199:344-348.
  • 6SVISHCHEVSKII S R.Invariant linear subspaces and exact solutions of nonlinear evolution equations[J].J Nonl MathPhys,1996(3):164-169.
  • 7SVISHCHEVSKII S R.Nonlinear differential operators of the first and second order possessing invariant spaces ofmaximal dimension[J].Theor Math Phys,1995,105:198-207.
  • 8夏亚荣.差分方程的不变子空间[J].齐齐哈尔大学学报(自然科学版),2010,26(2):74-78. 被引量:1
  • 9左苏丽,李吉娜.(2+1)维拟线性抛物方程和不变子空间[J].吉林大学学报(理学版),2011,49(1):16-20. 被引量:2

二级参考文献31

  • 1V A Galaktionov, Sergey R Svirshchevskii. Exact Solutions and Invariant Suhspaces of Nonlinear Partial Differential Equations in Mechanics and Physics[M]. londordboca Raton, FL: chapman and HaI1/CRC, 2007.
  • 2V A Galaktionov. On invariant subspace for nonlinear finite difference operators[J]. Royal Society of Edinburgh, 1998, 128 ( 6 ): 1293-1308.
  • 3S R Svirshchevskii. Nonlinear differential operators of first and second order possessing invariant linear spaces of maximal dimension[J]. Theoretical and Mathematical Physics, 1995, 105 ( 2 ): 1346-1353.
  • 4V A Galaktionov, S A Posashkov, S R Svirshchevskii. On invariant sets and explict solutions of nonlinear evolution equations with quadratic nonlinearities [J]. Differ. And Integr. Equat, 1995, 8:1 997-2 024.
  • 5A A Samarskii, V A Galaktionov, S P Kurdynmov, et al. Blow-up in Quasilinear Parabolic Equations[M]. Moscow: Nauka, 1987, 292.
  • 6V A Galaktionov, S A Posashkov. On new explicit solutions of parabolic equations with quadratic nonlinearities[J]. USSR Comput. Math. Phys., 1989, 29: 112-119.
  • 7V A Galaktionov. On new exact blow-up solutions for nonlinear heat conduction equations with source and applications[J]. Differ. And Integr. Equat., 1990 (3): 863-874.
  • 8Bluman G W, Kumei S. Symmetries and Differential Equations [M]. New York: Springer, 1989.
  • 9Lie S. Uber Die Integration Urch Bestimmte Integrals Von Einer Klasse Linear Partial Differential Gleichungen [ J ]. Arch Math, 1981, 6: 328-368.
  • 10Bluman G W, Cole J D. The General Similarity Sohition of the Heat Equation [J]. J Math Meeh, 1969, 18(1): 1025-1042.

共引文献5

同被引文献8

  • 1Changzheng Qu.Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Studies in Applied Mathematics . 1997
  • 2Victor A. Galaktionov.Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics . 1995
  • 3A.S. Fokas,Q.M. Liu.Nonlinear interaction of traveling waves of nonintegrable equations. Physical Review Letters . 1994
  • 4R.Z. Zhdanov.Conditional Lie-B\"acklund symmetry and reduction of evolution equations. J. Phys. A, Math. Gen . 1995
  • 5Changzheng Qu,Chunrong Zhu.Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method. J. Phys. A, Math. Theor . 2009
  • 6GALAKTIONOV V A,SVIRSHCHEVSKII S R.Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. . 2007
  • 7左苏丽,黄晴,王丽真,李吉娜.非线性扩散方程和不变子空间[J].西北大学学报(自然科学版),2011,41(1):5-7. 被引量:1
  • 8MA Wen-Xiu.A refined invariant subspace method and applications to evolution equations[J].Science China Mathematics,2012,55(9):1769-1778. 被引量:21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部