期刊文献+

分数阶混沌系统的投影同步 被引量:1

Projective synchronization of a new fractional-order chaotic system
下载PDF
导出
摘要 研究一个新的分数阶混沌系统的投影同步问题.给出了此系统不同相平面上的混沌吸引子,然后基于分数阶系统稳定性理论和滑模控制原理,为此系统设计了合适的控制器,实现了分数阶混沌系统的投影同步.数值仿真验证了所设计控制器的有效性. The dynamics and projective synehronzation of a new fractional chaotic system are studied The chaotic attractors in different phase space are got by numerical simulation. Based on the fractional stability theory, suitable synchronization controller is designed. Numerical simulations show the effec- tiveness and feasibility of the controllers.
出处 《纺织高校基础科学学报》 CAS 2012年第1期75-78,共4页 Basic Sciences Journal of Textile Universities
基金 甘肃省自然科学基金资助项目(0808-04) 天水师范学院科研基金项目(TSA0938)
关键词 分数阶混沌系统 投影同步 稳定性理论 fractional-order chaotic systemr projective synchronization stability theory
  • 相关文献

参考文献3

二级参考文献35

  • 1王琳,赵明,彭建华.广义Hénon映像的广义超混沌同步的电路实验[J].深圳大学学报(理工版),2005,22(1):31-36. 被引量:1
  • 2王兴元,石其江.Rssler混沌系统的追踪控制[J].物理学报,2005,54(12):5591-5596. 被引量:30
  • 3Lorenz E N.Deterministic nonperiodic flow[J].J Atmos Sci,1963,20:130.
  • 4Rossler O E.An equation for continuous chaos[J].Phys Lett A,1976,57:397.
  • 5Chen G R,Ueta T.Yet another chaotic attractor[J].Int J Bifurcation Chaos,1999,9:1465.
  • 6Celikovsky S,Chen G R.On a generalized Lorenz canonical form of chaotic systems via a nonlinear observed approach[J].Int J Bifurcation Chaos,2002,8:1789.
  • 7LU J H,Chen G R.A new chaotic attractor coined[J].Int J Bifurcation Chaos,2002,3:659.
  • 8Liu C X,Liu T,Liu L.A new chaotic attractor[J].Chaos Solitons and Fractals,2004,5:1031.
  • 9LU J H,Chen G R,Cheng D Z,et al.Bridge the gap between the Lorenz system and the Chen system[J].Int J Bifurcation Chaos,2002,12:2917.
  • 10Hartly T T, Lorenzo C F, Qammer H K 1995 IEEE Trans. CAS-I 42 485.

共引文献43

同被引文献12

  • 1Yuzhu Xiao,Wei Xu,Xiuchun Li,Sufang Tang.Adaptive complete synchronization of chaotic dynamical network with unknown and mismatched parameters. Chaos . 2007
  • 2Wenlian Lu,Tianping Chen.??New approach to synchronization analysis of linearly coupled ordinary differential systems(J)Physica D: Nonlinear Phenomena . 2005 (2)
  • 3Jianquan Lu,Daniel W.C. Ho,Jinde Cao,Jürgen Kurths.??Single impulsive controller for globally exponential synchronization of dynamical networks(J)Nonlinear Analysis: Real World Applications . 2013 (1)
  • 4Gang Zhang,Zengrong Liu,Zhongjun Ma.Synchronization of complex dynamical networks via impulsive control. Chaos . 2007
  • 5Lü J H,Chen G,Cheng D,et al.Bridge the gap between the Lorenz system and the Chen system. International Journal of Bifurcation and Chaos . 2002
  • 6Zhou, Jin,Lu, Jun-An,Lü, Jinhu.Adaptive synchronization of an uncertain complex dynamical network. IEEE Transactions on Automatic Control . 2006
  • 7Osipov G V,Kurths J,Zhou C.Synchronization in Oscillatory Networks. . 2007
  • 8Liu, Bin,Liu, Xinzhi,Chen, Guanrong,Wang, Huayou.Robust impulsive synchronization of uncertain dynamical networks. IEEE Transactions on Circuits and Systems I: Regular Papers . 2005
  • 9Li, Xiang,Wang, Xiaofan,Chen, Guanrong.Pinning a complex dynamical network to its equilibrium. IEEE Transactions on Circuits and Systems I: Regular Papers . 2004
  • 10Huang,Debin.Simple adaptive-feedback controller for identical chaos synchronization. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics . 2005

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部