期刊文献+

化学气相沉积法合成高强度纳米炭纤维/蜂窝堇青石复合材料(英文)

A high strength carbon nanofiber/honeycomb cordierite composite produced by chemical vapor deposition
下载PDF
导出
摘要 以C2H4为碳源、Ni-Cu合金作催化剂,采用化学气相沉积法在蜂窝状堇青石表面生长纳米炭纤维(CNFs),获得压缩强度为50.0MPa的纳米炭纤维/蜂窝堇青石复合材料。在堇青石表面蜂窝腔内生长的CNFs直径为20nm~30nm,CNFs之间相互交织形成5μm厚的纤维层,CNFs的质量分数为25.3%。金属Cu的掺杂对Ni-Cu合金的颗粒尺寸产生重要影响,进而影响CNFs的生长速率、纤维层厚度及其微结构。所合成CNFs的石墨化程度不高,在蜂窝堇青石中生长纳米炭纤维可以把其压缩强度从10MPa增加到50MPa。 A carbon nanofiber(CNF)/honeycomb cordierite composite with a compressive strength of 50 MPa was prepared by chemical vapor deposition,using C2H4 as the carbon source and Ni-Cu alloy as the catalyst.The CNFs with a diameter of 20-30 nm in the cells of the honeycomb interweave with each other to form a 5 μm-thick layer.The CNF content is 25.3 wt%.The Cu has remarkable effects on the particle size of the Ni-Cu alloy,which further affects the growth rate,loading level and nanostructures of the CNFs.The CNFs are not well graphitized and the insertion of the CNFs into the honeycomb can increase its compressive strength from 10 to 50 MPa.
机构地区 华东理工大学
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2012年第2期153-156,共4页 New Carbon Materials
基金 National Natural Science Foundation of China(20806024,51002051,50730003,50672025 and 20977028) Fundamental Research Funds for the Central Universities(WA1014016) Research Fund for the Doctoral Program of Higher Education of China(20090074110009) Research Fund of China 863 Program(2008AA062302)~~
关键词 纳米炭纤维 蜂窝状堇青石 微结构 缺陷 Carbon nanofibers Ceramic monolith Microstructure Defects
  • 相关文献

参考文献9

  • 1Enrique G B,Ingvar K,Chen D,et al.Carbon nanofibers uni-formly grown onγ-Alumina washcoated cordierite monoliths[J].Adv Mater,2006,18:1589-1592.
  • 2Cebollada P A R,Enrique G B.Optimisation of physical proper-ties ofγ-alumina coating microreactors used for the growth of a carbon nanofiber layer[J].Chem Eng J,2009,149(1-3):447-454.
  • 3Lucia M L,Sabino A,Enrique G B.Temperature-mediated con-trol of the growth of an entangled carbon nanofiber layer on stain-less steel micro-structured reactors[J].Carbon,2010,48(7):2047-2056.
  • 4Zhang J,Liu X,Blume R,et al.Surface-modified carbon nano-tubes catalyze oxidative dehydrogenation of n-Butane[J].Sci-ence,2008,322(5898):73-77.
  • 5Yoon S H,Lim S Y,Hong S H,et al.A conceptual model for the structure of catalytically grown carbon nano-fibers[J].Car-bon,2005,43(9):1828-1838.
  • 6Baker R T K,Rodriguez N,Mastalir,et al.Platinum/graph-ite nanofiber catalysts of various structure:characterization and catalytic properties[J].J Phys Chem B,2004,108(38):14348-14355.
  • 7Zhao T J,Kvande I,Yu Y D,et al.Synthesis of platelet carbon nanofiber/carbon felt composite on in situ generated Ni-Cu nano-particles[J].J Phys Chem C,2011,115(4):1123-1133.
  • 8Stemmet C P,Meeuwse M,van der Schaaf,et al.Gas-liquid mass transfer and axial dispersion in solid foam packings[J].Chem Eng Sci,2007,62(18-20):5444-5450.
  • 9Chinthaginjala J K,Bitter J H,Lefferts L.Thin layer of carbon-nano-fibers(CNFs)as catalyst support for fast mass transfer in hydrogenation of nitrite[J].Appl Catal A,2010,383(1-2):24-32.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部