摘要
以新疆西天山铅锌矿样品的Cu,Fe,Pb等元素X荧光测量数据做训练样本,McCulloch-Pitts神经网络(M-P神经网络)为基础,基体效应为依据,建立新的神经网络模型对Zn进行定量预测。结果预测值与测量值的相对误差在<5%。此方法可较准确,快速的应用于现场X荧光测定,为X荧光光谱信息修正提供一种新方法。
Because of different constraints(such as different kinds of measurable elements,characteristic X-ray energy,changes in matrix composition,etc.),usually it's not easy to get accurate information of elements,resulting in mistakes in later data analysis of energy disperse X-ray fluorescence measurement.The method is based on McCulloch-Pitts neural network(M-P neural network),according to matrix effect,to establish a new neural network model for quantitative forecasting of Zn by taking the data of X-ray fluorescence measurements of Cu,Fe,Pb,etc in lead-zinc mine in western Tianshan as the training sample.The relative error between predicted value and measured value is less than 5%.This method can be more accurate and rapid for X-ray fluorescence;it provides a new approach to correcting information of X-ray fluorescence.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2012年第5期1410-1412,共3页
Spectroscopy and Spectral Analysis
基金
国家(863计划)项目(2006AA06A207)
地质调查项目(1212011120186)资助
关键词
能量色散X荧光分析
改进型M-P神经网络
基体效应
定量预测
Energy disperse X-ray fluorescence measurement
Improved M-P neural network
Matrix effect
Quantitative prediction