期刊文献+

改进型M-P神经网络在能量色散X荧光分析测定铅锌矿元素含量的应用研究 被引量:3

Research on the Application of Improved M-P Neural Network to the Determination of Lead and Zinc Ore Element Contents by Energy Disperse X-Ray Fluorescence Analysis
下载PDF
导出
摘要 以新疆西天山铅锌矿样品的Cu,Fe,Pb等元素X荧光测量数据做训练样本,McCulloch-Pitts神经网络(M-P神经网络)为基础,基体效应为依据,建立新的神经网络模型对Zn进行定量预测。结果预测值与测量值的相对误差在<5%。此方法可较准确,快速的应用于现场X荧光测定,为X荧光光谱信息修正提供一种新方法。 Because of different constraints(such as different kinds of measurable elements,characteristic X-ray energy,changes in matrix composition,etc.),usually it's not easy to get accurate information of elements,resulting in mistakes in later data analysis of energy disperse X-ray fluorescence measurement.The method is based on McCulloch-Pitts neural network(M-P neural network),according to matrix effect,to establish a new neural network model for quantitative forecasting of Zn by taking the data of X-ray fluorescence measurements of Cu,Fe,Pb,etc in lead-zinc mine in western Tianshan as the training sample.The relative error between predicted value and measured value is less than 5%.This method can be more accurate and rapid for X-ray fluorescence;it provides a new approach to correcting information of X-ray fluorescence.
机构地区 成都理工大学
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第5期1410-1412,共3页 Spectroscopy and Spectral Analysis
基金 国家(863计划)项目(2006AA06A207) 地质调查项目(1212011120186)资助
关键词 能量色散X荧光分析 改进型M-P神经网络 基体效应 定量预测 Energy disperse X-ray fluorescence measurement Improved M-P neural network Matrix effect Quantitative prediction
  • 相关文献

参考文献9

二级参考文献83

共引文献82

同被引文献221

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部