期刊文献+

全局各向异性四边形主导网格重建方法 被引量:2

Global Anisotropic Quad-Dominant Remeshing
下载PDF
导出
摘要 四边形网格的结构特点要求网格单元满足全局一致性,难以取得网格质量与表达效率之间的平衡.为此,提出一种基于全局的各向异性四边形主导网格重建方法,可生成网格质量好且冗余程度低的四边形网格.重建过程以主曲率线为基本采样单元,首先计算模型表面的主曲率场并对主曲率场积分,得到密集的主曲率线采样;再根据贪心算法,利用几何形体自身的各向异性找出冗余度最高的主曲率线并予以删除;如此循环,直至达到理想的采样密度.该重建方法适用于任意拓扑网格模型,所得到的各向异性四边形主导网格在网格模型分辨率下降时,由于始终保留重要主曲率线,从而可以更好地保持模型特征.同时,在基于贪心算法的渐进式主曲率线删除过程中,可产生分辨率连续可调的四边形主导网格. This paper proposes an anisotropic quad-dominant remeshing algorithm suitable for meshes of arbitrary topology.It takes an approach to the challenging problem of obtaining an anisotropic quad-dominant mesh.The method consists of operations that sample surface geometry by dense principle curvature lines and sort curvature-lines by variations of surface normal and volume related to them.The anisotropic sampling of curvature lines is then obtained by implementing a prioritization scheme of curvature lines elimination.The strategy is simple and straightforward to implement.It is flexible to produce anisotropic quad-dominant meshes ranging from dense to coarse too.The resulting meshes exhibit better anisotropic distribution than comparable methods while maintaining high geometric fidelity.
出处 《软件学报》 EI CSCD 北大核心 2012年第5期1305-1314,共10页 Journal of Software
基金 国家自然科学基金(U0935004 U1135003 61100080) 国家重点基础研究发展计划(973)(2011CB302204) 国家科技支撑计划(2011BAH27B01 2011BHA16B08) 广东省重大科技专项(2011A080401007) 省部产学研结合科技创新平台项目(2011A091000032) 中山大学青年教师培育基金(2009-62000-3161033)
关键词 四边形主导网格 重新网格化 各向异性采样 网格疏化 quad-dominant mesh remeshing anisotropic sampling mesh coarsening
  • 相关文献

参考文献27

  • 1Manfredo Do Carmo MP. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
  • 2Cohen-Steiner D, Alliez P, Desbrun M. Variational shape approximation. ACM Trans. on Graphics, 2004,23(3):905-914. [doi: 10.1145/1015706.1015817].
  • 3Botsch M, Kobbelt L. Resampling feature and blend regions in polygonal meshes for surface anti-aliasing. Computer Graphics Forum, 2001,20(3):402-410. [doi: 10.1111/1467-8659.00533].
  • 4Simpson RB. Anisotropic mesh transformations and optimal error control. Applied Numerical Mathematics, 1994,14(1-3): 183-198. [doi: 10.1016/0168-9274(94)90025-6].
  • 5D'azevedo EF. Are bilinear quadrilaterals better than linear triangles? SIAM Journal on Seientic Computing, 2000,22(1):198-217. [doi: 10.1137/S106482759630406X].
  • 6Alliez P, Ucelli G, Gotsman C, Attene M. Recent advances in remeshing of surfaces. Research Report, AIM@SHAPE Network of Excellence, 2005.
  • 7Hormann K, L6vy B, Sheffer A. Mesh parameterization: Theory and practice. In: Proc. of the SIGGRAPH 2007. Courses Notes, ACM SIGGRAPH, 2007. [doi: 10.1145/1281500.1281510].
  • 8Alliez P, Meyer M, Desbrun M. Interactive geometry remeshing. ACM Trans. on Graphics, 2002,21(3):347-354. [doi: 10.1145/ 566654.566588].
  • 9Alliez P, de Verdiere EC, Devillers O, Isenburg M. Isotropic surface remeshing. In: Proc. of the Shape Modeling lnt'l Washington. IEEE Computer Society, 2003.49-58. [doi: 10.1109/SMI.2003.1199601 ].
  • 10Gu XF, Gortler S J, Hoppe H. Geometry images. ACM Trans. on Graphics, 2002,21(3):355-361. [doi: 10.1145/566654.566589].

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部