期刊文献+

新设计的碳纳米管锂盐的第一超极化率的理论研究

Theoretical Study on the First Hyperpolarizability of New Lithium Salt(Li-CNTs)
下载PDF
导出
摘要 利用B3LYP/6-31G(d)方法对设计的30个碳纳米管锂盐(Li-CNT)进行了结构优化和频率分析,并采用BHandHLYP/6-31G(d)方法计算了体系的第一超极化率.结果表明,锂原子掺杂的碳管具有较大的第一超极化率.当碳管径适当时,体系的第一超极化率随着管径的增加而增加.碳管的长度、极化率、电子延展广度R2和跃迁能ΔE对体系的第一超极化率β有一定的影响.另一方面,一些体系的分子第一超极化率与双能级模型吻合较好. The geometries of 30 lithium salts(Li-CNTs) are optimized at the B3LYP/6-31G(d) level and frequency analysis confirms that the optimized structures are stable.Then,the first hyperpolarizabilities of these structures are calculated at the BHandHLYP/6-31G(d) level of theory.The results demonstrate that lithium-doped carbon tubes have large first hyperpolarizability.For suitable tube diameter,the first hyperpolarizabilities increase with the increasing of tube diameter.Also,the length of CNTs,the polarizabilities α,electronic spatial extent R2,and transition energy have some influence on the first hyperpolarizability.On the other hand,the first hyperpolarizabilities of some systems satisfy two-level model very well.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期66-70,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 江苏省科技厅自然科学基金(BK2008372) 国家自然科学基金(20706029 20876073)
关键词 锂盐 非线性光学 第一超极化率 密度泛函理论 lithium salt non-linear optics first hyperpolarizability DFT
  • 相关文献

参考文献15

  • 1Sumio L.Helical microtubules of graphitic carbon[J].Nature,1991,354(7):56-58.
  • 2戴贵平,赵志刚,刘敏,侯鹏翔,王茂章,成会明.纳米碳管储氢机理的电化学研究[J].新型炭材料,2002,17(4):49-52. 被引量:4
  • 3Tasis D,Tagmatarchis N,Bianco A,et al.Chemistry of carbon nanotubes[J].Chem Rev,2006,106(3):1105-1136.
  • 4Yungryel R,Tae S L,Lubguban J A,et al.Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes[J].Appl Phys Lett,2006,88(24):241108-241111.
  • 5Nandi P K,Panja N,Ghanty T K,et al.Theoretical study of the effect of structural modifications on the hyperpolarizabilities of indigo derivatives[J].J Phys Chem A,2009,113(11):2623-2631.
  • 6Machn M,Reich S,Thomsen C.Ab initio calculations of the optical properties of4--diameter single-walled nanotubes[J].Phys Rev B,2002,66(15):155410-155414.
  • 7Guo G Y,Chu K C.Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations[J].Phys Rev B,2004,69(20):205416-205426.
  • 8Sun J,Guo Z Y,Liang W Z.Harmonic generation of open-ended and capped carbon nanotubes investigated by time-depend-ent Hartree-Fock theory[J].Phys Rev B,2007,75(19):195438-195444.
  • 9Raptis S G,Papadopoulos M G,Sadlej A J.Hexalithiobenzene:a molecule with exceptionally high second hyperpolarizability[J].Phys Chem Chem Phys,2000,2(15):3393-3399.
  • 10Champagne B,Spassova M,Jadin J B,et al.Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains[J].J Chem Phys,2002,116(9):3935-3946.

二级参考文献15

  • 1Dillion A C, Jones K M, Kiang T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386: 377-379.
  • 2Liu C, Fan Y Y, Cheng H M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature[J]. Science, 1999, 286: 1127-1129.
  • 3Fan Y Y, Liao B, Wei Y L, et al. Hydrogen uptake in vapor-grown carbon nanofibers[J]. Carbon, 1999, 37: 1649-1 652.
  • 4Ye Y, Ahn C C, Witham C, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes[J]. Appl Phys Lett. 1 999, 74: 2307-2309.
  • 5Chambers A, Park C, Baker R T K, et al. Hydrogen storage in graphite nanofibers[J]. J Phys Chem B, 1998, 102: 42 53-4256.
  • 6Nutzenadel C, Zuttel A, Chartouni D, et al. Electrochemical storage of hydrogen in nanotubes materials[J]. Electrochem Solid-S tate Lett, 1999, 2: 30-32.
  • 7Rajalakshmi N, Dhathathreyan K S, Govindaraj A, et al. Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage[J]. Electrochimica Acta, 2000, 45: 4511-4515.
  • 8Hirscher M, Becher M, Haluska M, et al. Hydrogen storage in sonicated carbon materials[J]. Appl Phys A, 2001, 72: 129-132.
  • 9Hirscher M, Becher M, Haluska M, et al. Hydrogen storage in carbon nanostructures[J]. J Alloys Comp, 2002, 330: 654-658.
  • 10Tibbetts G G, Meisner G P, Olk C H, Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers[J]. Carbon, 2001, 39: 2291-2301.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部