期刊文献+

希尔伯特空间中一类新的连续伪压缩映射的广义迭代算法(英文)

A New General Iterative Method for Continuous Pseudocontractive Mappings in Hilbert Spaces
下载PDF
导出
摘要 在希尔伯特空间中研究了一类新的连续伪压缩映射的广义迭代过程xn=αnγf(xn-1)+(I-αnA)Txnn≥0并证明了由该迭代算法生成的序列{xn}的收敛点为变分不等式〈(γf-A)p,y-p〉≤0 y∈F(T)的解. The purpose of this paper is to prove that the sequence {xn} generated by the iterative method xn=αnγf(xn-1)+(I-αnA)Txn n≥0converges strongly to a fixed point p∈F(T) which solves the variational inequality 〈(γf-A)p,y-p〉≤0 y∈F(T)
作者 林亨成
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期46-49,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 连续伪压缩映射 强正线性有界算子 变分不等式 continuous pseudocontractive mapping strongly positive linear bounded operator variational inequality
  • 引文网络
  • 相关文献

参考文献4

  • 1MARINO G,XU Hong-kun.A General Iterative Method for Nonexpansive Mappings in Hibert Spaces[J].J Math Ana Appl,2006,318:43-52.
  • 2DEIMLING K.Zero of Accretive Operators[J].Manuscripta Math,2003,116:659-678.
  • 3XU Hong-kun.An Iterative Approach to Quadratic Optimization[J].J Optim Theory Appl,2003,116:659-678.
  • 4王缨.渐近拟非扩张映象的带误差的Ishikawa迭代序列[J].西南师范大学学报(自然科学版),2003,28(1):52-54. 被引量:11

二级参考文献6

  • 1[1]Passty G B. Construction of fixed points for asymptotically nonexpansive mapping [J]. Proc Amer Math Soc,1982,84: 212-216.
  • 2[2]Schu J,Iterative construction of fixed points of asymptotically nonexpansive mappings [J]. J Math Anal Appl,1991,158: 407-413.
  • 3[3]Goebel K,Kirk W A,A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc Amer Math Soc,1972,35: 171-174.
  • 4[4]Ghosh M K,Debnath L. Convergence of Ishikawa iterates of quasi-nonexpansive mappings [J]. J Math Anal appl,1997,207: 96-103.
  • 5[5]Petryshyn W V,Williamson T E,Strong and weak convergence of the sequence of successive approx-imation for quasi-nonexpansive mappings [J]. J Math Anal Appl,1973,43: 459-497.
  • 6[6]Liu Qihou,Iterative sequences for asymptotically quasi-nonexpansive mappings with Error Member [J]. J Math Anal Appl,2001,259: 18-24.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部