期刊文献+

基于走行时间鲁棒可靠性的随机交通均衡问题 被引量:3

Stochastic Traffic Equilibrium Based on Travel Time Robust Reliability
下载PDF
导出
摘要 在基于走行时间可靠性的交通均衡问题中,普遍存在假设是引起走行时间变异的O-D(Origin-Destination)需求或路段通行能力的概率分布是精确已知的。然而,现实中这些概率分布很难精确获得.本文放松这个假设而仅要求知道O-D需求的前m阶矩(这里m是和路段费用函数的形式相关的正整数),通过运用最坏风险价值和最坏条件风险价值指标定义鲁棒分位走行时间和鲁棒超过期望走行时间,并证明在一般分布下两种出行时间是等价的.基于此定义,通过整合出行者的感知误差,提出了鲁棒分位随机用户均衡(鲁棒超过期望随机交通均衡)模型,模型被表示为一个变分不等式,并证明了解的存在性,然后运用一种启发式算法求解该模型.数值算例显现了模型在应用上的特性及算法上的有效性. An assumption that pervades the current reliablity-based traffic equilibrium problem is that probability distributions of the origin-destination(O-D) demand or/and link capacities are known explicitly.However,these distributions are difficult to be accurately obtained.This paper relaxes this assumption.It only needs to know the first m moments of travel demand(where m is a positive integer associated with the formulation of link cost function),and then applies two worst-case Value-at-Risk(WVaR) and worst-case Conditional value-at-risk(CVaR) risk measures to define robust percentile travel time(RPTT) and robust mean-excess travel time(RMETT) and prove that this two kinds travel time is equal under general distribution.Based on the defined travel time,the robust percentile stochastic user equilibrium(RPSUE) or robust mean-excess stochastic traffic equilibrium model(RMESTE) is proposed by incorporating trarelers'percoption error,which is formulated as an equivalent route-based variational inequality.Conditions are established guaranteeing existence of this equilibrium.A heuristic solution problem is introduced to solve the variational inequalities problem.A numerical example is used to illustrate the applications of the proposed model and the solution algorithm.
作者 孙华 高自友
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2012年第2期76-84,97,共10页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(71131001) 国家973计划(2012CB725400)
关键词 系统工程 随机交通均衡问题 最坏风险价值 最坏条件风险价值 鲁棒分位走行时间 鲁棒超过期望走行时间 变分不等式 system engineering stochastic traffic equilibrium problem worst-case value-at-risk worst-case conditional value-at-risk robust percentile travel time robust mean-excess travel time variational inequalities
  • 相关文献

参考文献21

  • 1Fosgerau M, Engelson L. The value of travel time variance [ J]. Transportation Research Part B 2011,45 (1) :1-8.
  • 2Jorion P. Value-at-Risk: the new benchmark for controlling market risk [ M]. Irwin Professional Publishing,Chicago, 1996.
  • 3Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk [ J ]. Journal of Risk,2000,2 ( 3 ) : 21-41.
  • 4Nie Y. Multi-class percentile user equilibrium with flow- dependent stochastic [ J ]. Transportation Research Part B ,2011,45 (10) : 1641-1659.
  • 5Hall P R. Travel outcome and performance: the effect of uncertainty on accessibility [ J ]. Transportation Research Part B, 1983,17 (4) :275-290.
  • 6Wu X, Nie Y. Modeling heterogeneous risk-taking behavior in route choice: a stochastic dominance approach [ J].Transportation Research Part A, 2011, 45(9) : 896-915.
  • 7Lo H K, Luo X W, Siu B W Y. Degradable transportation network: travel time budget of travelers with heterogeneous risk aversion [ J]. Transportation Research Part B, 2006,40(9) :792-806.
  • 8Shao H, Lam W H K, Tam M L. Demand Driven traffic assignment problem based on travel time reliability[ J ]. Transportation Research Record, 2006, 1985 : 220-230.
  • 9Shao H, Lain W H K, Tam M L. A reliability-based stochastic traffic assignment model for network with multiple user classes under uncertain in demand [ J ]. Network and Spatial Economics,2006,6(3/4) : 313-332.
  • 10Siu B W Y, Lo H K. Doubly uncertain transport network: Degradable capacity and stochastic demand [ J ]. European Journal of Operational Research, 2008,191(1) : 166-181.

同被引文献45

  • 1沈颖,朱翀,徐英俊.道路饱和度计算方法研究[J].交通标准化,2007,35(1):125-129. 被引量:23
  • 2Liu M J, Mao B H, Gao F, et al. Analysis on commuter' s activity chain choice behavior [C]. Proceedings of the Sixth International Conference On Traffic and Transpor- tation Studies. ASCE, USA, 2008: 222-230.
  • 3Jenelius E. The value of travel time variability with trip chains, flexible scheduling and correlated travel times [J]. Transportation Research Part B, 2012, 46(6): 762- 780.
  • 4Bergin, S M. Torsten hagerstrand' s spatial innovation diffusion model (Version 2) [EB/OL]. CoMSES Computa- tional Model Library, Retrieved from: http://www.open- abm.org/model/3163/version/2, 2012.
  • 5Ben-Akiva M E, Bowman J L. Activity-based disaggre- gate travel demand model system with activity schedules [J].Transportation Research A, 2001, 35(1): 1-28.
  • 6Golob T F. Structural equation modeling for travel behav- ior research [J]. Transportation Research B, 2003, 37(4): 1-25.
  • 7Maruyama T, Sumalee A. Efficiency and equity compari- son of cordon- and area-based road pricing schemes us- ing a trip-chain equilibrium model [J]. Transportation Research Part A, 2007, 41(7): 655-671.
  • 8Bell M G H, Liu X, Angeloudis P, et al. A frequency- based maritime container assignment model [J], Trans- portation Research Part'B, 2011, 45(8): 1152-1161.
  • 9张政,毛保华,刘明君,陈金川,郭继孚.北京老年人出行行为特征分析[J].交通运输系统工程与信息,2007,7(6):11-20. 被引量:59
  • 10ZHANG C, CHEN X J, SUMALEE A. Robust Wardorp's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach[J]. Transportation Research Part B, 2011, 45(3): 534-552.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部