期刊文献+

乘客有序和无序上车行为的模拟和比较研究 被引量:2

Modeling Passengers' Orderly and Disorderly Boarding Behavior in a Transit System
下载PDF
导出
摘要 受停靠站特性、乘客上车行为及其分布特征等因素的影响,公共交通系统运行过程中容易产生集簇等复杂现象.本文细致考虑了停靠站在线路上和乘客在停靠站的分布情况,通过刻画乘客有序和无序的上车行为,构建了一个新的公交运输系统元胞自动机模型.数值模拟结果与解析结果高度吻合,清晰地刻画了车辆在公交线路上的时空分布,再现了公交运行中的堵塞和集簇现象,定量地评价了停靠站分布、乘客分布、不同上车模式对车辆平均速度的影响.本研究有助于进一步认识不同上车模式下集簇现象的形成机理,对规范上车行为和优化停靠站设计具有指导意义. Cluster and other complex phenomena of bus flow easily occur due to such factors as bus stop location,passenger distribution and boarding behavior in a transit system.A new cellular automaton model which simultaneously considers these factors,particularly the passengers' orderly and disorderly boarding behavior,is proposed in this paper.Numerical simulation results,which match the analytic results well,show that the model can explicitly depict the space-time trajectories of bus movement along a bus line,reproduce the cluster and jam phenomena of bus flow,and quantitatively evaluate the impacts of various factors on bus average speed.The study provides insights on formation mechanism of cluster phenomena under different boarding modes,advocates orderly boarding behavior and helps the optimization of locating bus stations.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2012年第2期168-173,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(71001001 71071044)
关键词 交通工程 公交运输系统 元胞自动机模型 跃迁概率 公交停靠站 traffic engineering public transit system cellular automaton model hopping probability bus station
  • 相关文献

参考文献18

  • 1Kerner B S. The physics of traffic:Empirical freeway pattern features, engineering applications, and theory [ M]. German : Springer, 2004.
  • 2Helbing D. Trafic and related self-driven many particle systems [ J ]. Reviews of Modem Physics, 2001,73 : 1067-1141.
  • 3Chowdhury D, Santen L, Schadschneider A. Statistical physics of vehicular traffic and some related systems [ J]. Physics Reports,2000,329(4-6) : 199-329.
  • 4Maerivoet S, Moor B D. Cellular automata models of road traffic [ J ]. Physics Reports, 2005, 419 ( 1 ) : 1-64.
  • 5Nagatani T. Bunching and delay in bus-route system with a couple of recurrent buses [ J] Physica A,2001, 63(3-4) : 629-639.
  • 6Nagatani T. Interaction between buses and passengers ona bus route [J]. Physica A,2001,296(1-2): 320-330.
  • 7Nagatani T. Chaos control and schedule of shuttle buses [J]. Physica A,2006,371 (2) : 683-691.
  • 8Nagatani T. Kinetic clustering and jamming transitions in a car-following model for bus route [ J ]. Physica A, 2000,287(1-2) : 302-312.
  • 9Huijberts H J C. Analysis of a continuous car-following model for a bus route: Existence, stability and bifurcations of synchronous motions [ J]. Physica A, 2002,308(1-4) : 489-517.
  • 10O' loan O J, Evans M R, Cares M E. Jamming transition in a homogeneous one-dimensional system: The bus route mode [ J ]. Physical Review E, 1998,58 ( 2 ) : 1404-1418.

二级参考文献19

  • 1O'Loan O J, Evans M R, Cates M E. Jamming transition in a homogeneous one-dimensional system: The bus route mode[J]. Physical Review E, 1998, 58 (2) : 1404 - 1418.
  • 2Jiang R, Hu M B, Jia B, et al. Realistic bus route model considering the capacity of the bus [ J ]. The European Physical Journal B, 2003, 34(3) : 367 - 372.
  • 3Nagatani T. The physics of traffic jams [ J ]. Reports on Progress in Physics, 2002, 65:1331 - 1386.
  • 4Tomoeda A, Nishinari K, Chowdhnry D, et al. An information-based traffic control in a public conveyance system: Reduced clustering and enhanced efficiency [J]. Physiea A, 2007, 384(2): 600- 612.
  • 5Jiang R, Hu M B, Jia B, et al. Phase transition in a mixture of adaptive cruise control vehicles and manual vehicles [J]. The European Physical Journal B, 2007, 58: 197- 206.
  • 6Kesting A, Treiber M, Schonhof M, et al. Jam-avoiding adaptive cruise control (ACC) and its impact on traffic dynamics [ J ]. Traffic and Granular Flow'05, Springer, 2007 : 633 - 643.
  • 7Kemer B S. The physics of traffic : empirical freeway pattern features, engineering applications, and theory [ M ]. German: Springer, 2004.
  • 8Helbing D. Trafic and related self-driven many particle systems[J]. Reviews of Modern Physics, 2001, 73 : 1067 - 1141.
  • 9Chowdhury D, Santen L, Schadschneider A. Statistical physics of vehicular traffic and some related systems [ J ]. Physics Reports, 2000, 329(4 - 6) : 199 - 329.
  • 10Maerivoet S, Moor B D. Cellular automata models of road traffic[J]. Physics Reports, 2005, 419(1) : 1 - 64.

共引文献5

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部