期刊文献+

基于L-M算法优化BP神经网络的储粮害虫分类识别研究 被引量:4

Research on the Detection and Classification in Stored-grain Based on BP Neural Network with L-M Optimization
下载PDF
导出
摘要 以储粮害虫为对象,研究了利用数字图像处理技术与BP神经网络技术实现离线检测与分类识别。首先对4类常见储粮害虫进行图像采集、预处理以及9个常用形态学特征的提取,再通过特征分析把有效特征压缩至6维,将其作为BP神经网络的输入参数,对应的储粮害虫的类别代号作为输出参数,构造BP神经网络,并在网络训练过程中利用L-M算法进行优化。最后通过实验证明该方法在害虫识别算法中稳定性好,收敛速度快,预测精度高。 Taking the stored-grain pest as an object,it presents a method of offline detection and classification based on the technology of digital image processing and optimized BP neural network.Through comparison and analysis of the morphological feature parameters of pest outline,it reduces the 9 effective features to 6,and uses these features as input parameters of BP neural network.It establishes the neural network model between the feature parameters and pest categories,and improves the model with the numerical optimization method of L-M.The experiment results show the method proposed has obvious advantages of good stability,fast convergence and high accuracy.
出处 《中国制造业信息化(学术版)》 2012年第4期76-80,共5页
基金 国家科技支持计划项目(2009BAI81B02) 江苏省电子商务省级重点实验室开放课题(2011-JS-DZSW-01) 中央高校南航科研基本业务项目(56XAA12010)
关键词 储粮害虫 图像处理 BP神经网络 L-M算法 Stored-Grain Pest Image Processing BP Neural Network L-M Algorithm
  • 相关文献

参考文献8

二级参考文献33

  • 1周龙,陈绵云.储粮害虫图像的灰关联分析方法研究[J].粮食储藏,2004,33(6):3-6. 被引量:3
  • 2梁永生.储粮害虫防治战略——害虫综合治理[J].粮油仓储科技通讯,1994,10(4):7-11. 被引量:10
  • 3张铃,张钹.神经网络中BP算法的分析[J].模式识别与人工智能,1994,7(3):191-195. 被引量:58
  • 4李智,李战胜,YigongLOU.基于蚁群算法的内燃机配气机构凸轮型线的动力学仿真[J].农业工程学报,2005,21(6):64-67. 被引量:6
  • 5沈清 胡得文 等.神经网络应用技术[M].国防科技大学出版社,1998.127-156.
  • 6Zayas I Y.Detection of insects in bulk wheat samples with machine vision[J].IEEE Trans ASAE,1998 (3):883-888.
  • 7Osuna E,Freund R,Girosi F.Training support vector machines:An application to face detection[C].Proceeding of CVPR' 97,Puerto Rico,1997.
  • 8Platt J.Fast training of support vector machines using sequential minimal optimization[C]//Scholkopt B.Burges C J C,Smola A J.Advances in Kernel Methods-Support Vector Learning,Cambridge,MA,MIT Press,1999:185-208.
  • 9Keerthi S S,Shevade S K,Bhattacharyya C,et al.A fast iterative nearest point algorithm for support vector machine classifier design[R]//Technical Report TR-ISL-99-03 Intelligent Systems Lab Dept of Computer Science and Automation Indian Institute of Science Bangalore,India,1999.
  • 10Mankin R W,Appl Acoust,1997年,50卷,309页

共引文献160

同被引文献32

  • 1乔晶晶,潘宏侠.基于遗传算法优化神经网络的齿轮故障诊断[J].水电能源科学,2010,28(6):106-108. 被引量:13
  • 2汪露,黄丽莉,杨慧勇,高灵旺.果实蝇属昆虫图像识别系统的开发与测试[J].植物检疫,2013,27(5):29-36. 被引量:10
  • 3王建梅,覃文忠.基于L-M算法的BP神经网络分类器[J].武汉大学学报(信息科学版),2005,30(10):928-931. 被引量:53
  • 4Chen Binhua, Guo Wenbin, prediction based on LMBP Zhang Xing, et al. Spectrum neural network [C]//IEEE 2010 4th International Conference on Intelligent Infor mation Technology Application, 2010 : 246-249.
  • 5杨淑莹.模式识别与智能计算Matlab技术实现[M].北京:电子工业出版社,2011:133-185.
  • 6朱凯,王正林.精通Matlab神经网络[M].北京:电子工业出版社,2011:353-375.
  • 7Mu Chengpo,Wang Jiyuan,Yuan Zhijie,et al. The research of the ATR system based on infrared images and L-M BP neural network[ C]//Proc of ICIG. [ s. l. ] :IEEE,2013:801-805.
  • 8Pun T. Entropic thresholding: a new approach [ J ]. Computer Graphics and Image Processing, 1981,16 ( 3 ) :210-239.
  • 9Dangman J G. High confidence visual recognition of persons by a test of statistical independence [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 ( 11 ) : 1148-1161.
  • 10Zhao Quanhua,Song Weidong,Sun Guohua. The recognition of land cover with remote sensing image based on improved BP neutral network[ C]//Proc of ICMT. [ s. l. ] :IEEE,2010.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部