期刊文献+

甘蓝型油菜表皮特异硫蛋白(ESP)的序列分析及其诱导表达 被引量:1

Sequence Analysis and Induced Expression of Epithiospecific Protein (ESP) from Brassica napus
下载PDF
导出
摘要 为了揭示植物激素及环境胁迫对甘蓝型油菜(Brassica napus)表皮特异硫蛋白(ESP)表达的影响,以中双9号品种为材料,采用同源克隆法获得一编码甘蓝型油菜表皮特异硫蛋白(BnESP)的cDNA,序列分析表明其编码蛋白BnESP含有343个氨基酸,与青花菜(Brassica napus)ESP有99%的相似性,与拟南芥腈特异性蛋白、类黑芥子酶结合蛋白、茉莉酸诱导蛋白有较高的同源性。荧光定量RT-PCR分析显示,甲基茉莉酸和机械伤害快速激活BnESP的表达,苯丙噻重氮和核盘菌(Sclerotinia sclerotiorum)抑制其表达。研究证明BnESP是茉莉酸诱导蛋白,可能在水杨酸和茉莉酸信号的互作及油菜对S.sclerotiorum的反应网络中起作用。 In order to explore the effect of plant hormones and environment stress on the expression of Brassica napus ESP (BnESP),'a cDNA encoding BnESP was cloned from Zhongshuang No. 9 by homology cloning approach. Sequence analysis showed that BnESP had 343 amino acids, and revealed 99% identity with brassica oleracea ESP and a high homology with nitrile- specific proteins (NSP), MY-binding-like protein (MBP) and JA inducible protein (JIP). Quantitative RT-PCR analysis showed that the expression of BnESP were promptly activated by MeJA and by wound treatment, and suppressed by Benzothiadiazole and by Sclerotinia sclerotiorum. This study suggests that ESP is a JIP and plays an important role in crossing-talk between SA and JA signaling and in the molecular network of oilseed rape response against S. sclerotiorum. Meanwhile, this study can provide a cue for producing health foods through attenuating the expression of ESP in cruciferous plants.
出处 《食品科学》 EI CAS CSCD 北大核心 2012年第7期209-214,共6页 Food Science
基金 国家自然科学基金面上项目(31071672) 江苏省高校自然科学基金面上项目(10KJB210001) 江苏大学高级专业人才科研启动基金(09JDG061) 中国博士后科学基金面上资助项目(2011M500873) 江苏省博士后科学基金项目(1102130C)
关键词 油菜 表皮特异硫蛋白 基因克隆 诱导表达 oilseed rape epithiospecific protein (ESP) gene cloning induced expression
  • 相关文献

参考文献33

  • 1CHUNG F L,CONAWAY C C,RAO C,et al.Chemoprevention ofcolonic aberrant crypt foci in Fischer rats by sulforaphane and phenethylisothiocyanate[J].Carcinogenesis,2000,21:2287-2291.
  • 2FENWICK G R,HEANEY R K.Glucosinolates and their breakdownproducts in cruciferous crops,foods,and feeding-stuffs[J].Food Chem,1983,11(4):249-271.
  • 3TALALAY P,FAHEY J W,HOLTZCLAW W D,et al.Chemoprotectionagainst cancer by phase 2 enzyme induction[J].Toxicol Lett,1995,82/83:173-179.
  • 4TOOKEY H L.Nitrile-specifier proteins involved in glucosinolate hy-drolysis in Arabidopsis thaliana[J].Can J Biochem,1973,51:1305-1310.
  • 5KISSEN R,BONES A M.The genetic basis of constitutive and herbi-vore-induced ESP-independent nitrile formation in Arabidopsis[J].JBiol Chem,2009,284(18):12057-12070.
  • 6BUROW M,LOSANSKY A,MU..LLER R,et al.The genetic basis ofconstitutive and herbivore-induced ESP-independent nitrile formation inArabidopsis[J].Plant Physiol,2009,149(1):561-574.
  • 7DEKKER M,VERKERK R,JONGEN W M F.Predictive modeling ofhealth aspects in the food production chain:a case study on glucosinolatesin cabbage[J].Trends Food Sci Technol,2000,11(4/5):174-181.
  • 8KISSEN R,ROSSITER J T,BONES A M.The mustard oil bomb,:not so easy to assemble?Localization,expression and distribution of thecomponents of the myrosinase system[J].Phytochem Rev,2009,8:69-86.
  • 9TOOKEY H L.Crambe thioglucoside glucohydrolase(EC3.2.3.1):sepa-ration of a protein required for epithiobutane formation[J].Can J Biochem,1973,51:1654-1660.
  • 10MATUSHESKI N V,SWARUP R,JUVIK J A,et al.Epithiospecifierprotein from broccoli(Brassica oleracea L.ssp.italica)inhibits forma-tion of the anticancer agent sulforaphane[J].J Agric Food Chem,2006,54:2069-2076.

同被引文献27

  • 1Adams J, Kelso R, Cooley L (2000). The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol, 10 (1): 17-24.
  • 2Ahuja I, Rohloff J, Bones AM (2010). Defence mechanisms of Bras- sicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agron Sustain Dev, 30 (2): 311-348.
  • 3Bernardi R, Negri A, Ronehi S, Palmieri S (2000). Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp. oleifera) seed and its characterization. FEBS Lett, 467 (2-3): 296-298.
  • 4Bones AM, Rossiter JT (1996). The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant, 97 (1): 194-208.
  • 5Brandt W, Backenk6hler A, Schulze E, Plock A, Herberg T, Roese E, Wittstock U (2014). Molecular models and mutational analyses of plant specifier proteins suggest active site residues and reac- tion mechanism. Plant Mol Biol, 84 (1-2): 173-188.
  • 6Burow M, M~iller R, Gershenzon J, Wittstock U (2006). Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodop- tera littoralis. J Chem Ecol, 32 (11): 2333-2349.
  • 7Buxdorf K, Yaffe H, Barda O, Levy M (2013). The effects of gluco- sinolates and their breakdown products on necrotrophic fungi. PLoS ONE, 8 (8): e70771.
  • 8Dai J, Deng J, Du J (2008). Development of bisexual attractants for diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) based on sex pheromone and host volatiles. Appl Entomol Zool, 43 (4): 631-638.
  • 9de Vos M, Kriksunov KL, Jander G (2008). Indole-3-acetonitrile pro- duction from indole glucosinolates deters oviposition by Pieris rapae. Plant Physiol, 146 (3): 916-926.
  • 10Foo HL, Gronning LM, Goodenough L, Bones AM, Danielsen BE, Whiting DA, Rossiter JT (2000). Purification and characterisa- tion of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett, 468 (2-3): 243-246.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部