期刊文献+

GM(1,1)和SVR的雷达电子部件状态趋势预测模型 被引量:2

Radar Electronic Components State Trend Forecast Model Based on GM(1,1) and SVR
下载PDF
导出
摘要 为提高雷达电子部件状态趋势预测的精度,根据测试数据特点,提出了基于GM(1,1)与支持向量机回归(SVR)的组合预测模型。采用粒子群优化算法分别对GM(1,1)和SVR模型进行了改进,提高了单一模型的预测精度。在此基础上,结合GM(1,1)模型对趋向性数据的预测优势和SVR模型对数据波动的强适应性,达到了取长补短、相得益彰的效果。实验结果表明该组合模型不但具有更高的预测精度,而且对不同预测对象有更强的适应能力。 In order to improve the forecast accuracy of radar electronic components state trend, according to the characteristics of test data,this paper proposes a combination forecasting model based on GM(1,1) and support vector machine regression(SVR).By using PSO,GM(1,1) and SVR model are separately modified to improve the forecast accuracy.On this basis,the combined model combines with GM (1,1) model' s advantages of the trend data forecast and SVR model' s strong adaptability to data fluctuations,reaching each other,complement each other.Experimental results show that the combined model not only has higher forecast accuracy,but stronger adaptability to different objects.
机构地区 空军雷达学院
出处 《火力与指挥控制》 CSCD 北大核心 2012年第4期150-153,156,共5页 Fire Control & Command Control
基金 部级重点项目 空军维修改革项目(KJ06192)
关键词 雷达电子部件 状态趋势预测 GM(1 1)模型 支持向量机回归 粒子群优化算法 radar electronic components state trend forecast GM(1 1) model SVR PSO
  • 相关文献

参考文献12

二级参考文献77

共引文献359

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部