期刊文献+

排列熵算法研究及其在振动信号突变检测中的应用 被引量:49

Research and application of the arithmetic of PE in testing the sudden change of vibration signal
下载PDF
导出
摘要 排列熵算法具有计算简单、实时性高、能较好地反映时间序列数据微小的变化,已成为一种检测复杂系统动力学突变的有力工具。首先阐述了排列熵算法的基本原理,通过仿真信号的排列熵计算结果,说明了时间序列排列熵对信号突变的检测效果,最后以某型坦克变速箱振动信号为例,通过提取振动信号的峰峰值特征,形成新的时间序列数据用于排列熵的计算,结果表明排列熵值的变化能够有效反映信号的突变时刻。 Since permutation entropy(PE) algorithm can be computed simply,shows good quality in real-time application and can better distinguish tiny change of a time series data,it has become a powerful tool in detecting sudden changes of a complex dynamic system.Basic principle of PE algorithm is introduced in this paper firstly,and then a simulated signal is taken as an example to verify the effectiveness of PE value in abnormal detection.Finally,vibration signal from a gearbox of a certain tank is analyzed,features of peak-to-peak value are calculated to form a new series data.PE algorithm is applied to the new peak-to-peak series data.Results show that PE can find the moment corresponding to sudden change of the vibration signal successfully.
出处 《振动工程学报》 EI CSCD 北大核心 2012年第2期221-224,共4页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51075396)
关键词 故障诊断 排列熵 突变检测 振动信号 fault diagnosis PE sudden change detection vibration signal
  • 相关文献

参考文献13

  • 1侯威,封国林,董文杰,李建平.利用排列熵检测近40年华北地区气温突变的研究[J].物理学报,2006,55(5):2663-2668. 被引量:44
  • 2郝成元,吴绍洪,李双成.排列熵应用于气候复杂性度量[J].地理研究,2007,26(1):46-52. 被引量:27
  • 3Xiaoliang Sun.The complexity of gene expressiondynamics revealed by permutation entropy[J].BMCBioinformatics,2010:607-621.
  • 4Yuedan Liu.Permutation entropy applied tomovement behaviors of drosophila Melanogaster[J].Modern Physics Letters B.,2011,(25):1 133-1175.
  • 5Frank Birgit,Pompe B.Permutation entropy improvesfetal behavioural state classification based on heartrate analysis from biomagnetic recordings in near termfetuses[J].Medical and Biological Engineering andComputing,2006,44(3):179-187.
  • 6Mammone Nadia,Lay-Ekuakille Aime.Analysis ofabsence seizure EEG via permutation entropy spatio-temporal clustering[A].2011 IEEE InternationalSymposium on Medical Measurements andApplications,Proceedings[C].2011:1 417-1 422.
  • 7Nicolaou N,Georgiou J.Detection of epilepticelectroencephalogram based on permutation entropyand support vector machines[J].Expert Systems withApplications,2012:202-209.
  • 8Li Yi,Qian Cheng,Fan Yingle.Unsupervised texturesegmentation using permutation entropy and grey-level feature[A].Proceedings of the World Congresson Intelligent Control and Automation[C].2006:9845-9 848.
  • 9Li Yi,Qian Cheng,Fan Yingle.Texture segmentationbased on permutation entropy[A].2009 3rdInternational Conference on Bioinformatics andBiomedical Engineering(iCBBE 2009)[C].2009:1-4.
  • 10Keller K,Sinn M.Ordinal analysis of time series[J].Physical A--Statistical Mechanics and ItsApplications,2005,356(1):114-120.

二级参考文献30

  • 1毛政旦.论山地气候带和气候型[J].地理研究,1989,8(3):21-29. 被引量:6
  • 2Bandt C,Pompe B.Permutation entropy:A natural complexity measure for time series.Phys.Rev.Lett.,2002,88(174102):1~4.
  • 3Schwartz T U,Walczak R,Blobel G.Circular permutation as a tool to reduce surface entropy triggers crystallization of the signal recognition particle receptor β subunit.Protein Science,2004,13:2814~2818.
  • 4Pardo E,Tovar F J R.MAXENPER:a program for maximum entropy spectral estimation with assessment of statistical significance by the permutation test.Computers & Geosciences,2005,31:555~567.
  • 5Sheng S, Zhang L, Robert X Gao. A Systematic Sensor- Placement Strategy for Enhanced Defect Detection in Rolling Beatings [ J ]. Sensors Journal, IEEE, 2006 , 6 (5): 1346 --1354.
  • 6梅宏斌著.滚动轴承振动检测与诊断[M].北京:机械工业出版社,1996.
  • 7Schreiber T. Phys. Rev. Lett. 78, 843 ,1997.
  • 8Provenzale A, Smith L A, Vio R, Murante G. Physica D 58, 31,1992.
  • 9Yu D J, Lu W P, Harrison R G. Phys. Lett. A 250, 323,1998.
  • 10Manuca R,Savit R. Physica D 99,134,1996.

共引文献94

同被引文献400

引证文献49

二级引证文献395

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部