期刊文献+

基于神经网络的近地面气温遥感反演研究 被引量:1

Study of remote sensing inversion of temperature near ground based on neural network
下载PDF
导出
摘要 为了获取近地面气温的空间分布格局,鉴于遥感技术在获取地表时空分布信息方面所具有的优势,提出了利用BP神经网络进行遥感反演近地面日平均气温、日最高和最低气温的算法。采用汉江上游流域的气象站点观测数据和Landsat ETM+遥感图像进行了试验研究。研究结果表明,遥感反演近地面日平均气温和日最高气温时,单纯利用遥感信息或者地形信息,都不能得到精度最高的结果,只有把两者结合起来,才能准确地获取近地面气温的空间分布信息。 In order to acquire the spatial distribution pattern of temperature near the ground,we take the advantages of remote sensing technology in information acquiring of temporal and spatial distribution pattern near the ground,and propose an algorithm for remote inversion calculation of daily average,highest and lowest temperatures near the ground using BP neural network.The monitoring data of meteorological observation stations in upper Hanjiang River Basin and Landsat ETM+ remote sensing imagines are adopted for experimental study.It shows that the precision of the simulation results of daily average and highest temperature near the ground would be the highest by neither remote sensing information nor terrain information,and only by the combination of 2 methods,the higher accurate result can be obtained.
出处 《人民长江》 北大核心 2012年第8期32-37,共6页 Yangtze River
基金 国家自然科学基金(51009011)
关键词 近地面气温 BP神经网络 遥感反演 汉江上游流域 temperature near the ground BP neural network remote sensing inversion upper Hanjiang River Basin
  • 相关文献

参考文献14

  • 1Nalder I A,Wein R W. Spatial interpolation of climatic Nomals:test of a new method in the Canadian boreal forest[J].Agricultural and Forest Meteorology,1998,(92):211-225.
  • 2朱华忠,罗天祥,Christopher Daly.中国高分辨率温度和降水模拟数据的验证[J].地理研究,2003,22(3):349-359. 被引量:36
  • 3Thornton P E,Running S W,White M A. Generating surfaces of daily meteorological variables over large regions of complex terrain[J].Journal of Hydrology,1997,(90):214-251.
  • 4Aires F,Prigent C,Rossow W B. A new neural network approach including first guess for retrieval of atmospheric water vapor,cloud liquid water path,surface temperature,and emissivities over land from satellite microwave observations[J].Journal of Geophysical Research,2001,(14):14887-14907.doi:10.1029/2001JD900085.
  • 5Fang H,Liang S L. Retrieving leaf area index with a neural network method:simulation and validation[J].IEEE Transactions on Geoscience and Remote Sensing,.
  • 6Hagan M T,Menhaj M. Training feed-forward networks with the Marquardt algorithm[J].IEEE Transactions on Neural Networks,1994,(06):989-993.doi:10.1109/72.329697.
  • 7Demuth H,Beale M. Neural Network Toolbox User's Guide[M].Natick:The Math Works,1997.137-194.
  • 8Gilahert MA,Conese C,Masselli F. An atmospheric correction method for the automatic retrieval of surface reflectance from TM images[J].International Journal of Remote Sensing,1994,(10):2065-2086.
  • 9Zhang W C,Yamaguichi Y,Ogaw K. Evaluation of the pre-procesing of the remotely sensed data on the actual evaporation,surface soil moisture mapping by an approach using Landsat,DEM and meteorological data[J].Geocartography International,2002,(04):57-67.
  • 10Gordon H R. Remote sensing of ocean color:a methodology for dealing with broad spectral bands and significant out-of band response[J].Applied Optics,1995,(36):8363-8374.

二级参考文献18

  • 1郭迎春.太行山燕山山地降水推算方法研究[J].地理学与国土研究,1994,10(3):35-39. 被引量:7
  • 2黄录基,张绍贤,黎瑜.降水、蒸发和径流的坡向效应[J].水土保持学报,1994,8(1):18-25. 被引量:9
  • 3喻洁,喻家龙.山地降水垂直分布三参数高斯模式及其应用[J].地理研究,1996,15(4):82-86. 被引量:3
  • 4中国科学院中国生态系统研究网络综合研究中心.中国科学院中国生态系统研究网络简介[M].北京:中国环境科学出版社,1998..
  • 5IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle, implications for the Kyoto Protocol. Science, 1998, 280:1393-1394.
  • 6Cihlar J, Denning A S, Gosz J. Global Terrestrial Carbon Observation: Requirements, Present Status, and Next Steps. GTOS 23, TCO Synthesis Workshop, 8-11 February, Ottawa, Canada,, 2000. 102.
  • 7Daly C, Neilson R P, Phillips D L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Applied Meteorology, 1994, 33(2):140-158.
  • 8Bishop G D, Church M R, Daly C. Effects of improved precipitation estimates on automated runoff mapping:Eastern United States. J. Am. Water Resour. Assoc, 1998, 34(1): 159-166.
  • 9Vogel R M, Wilson I, Daly C. Regional regression models of annual Streamflow for the United States. J. Irrigation and Drainage Engineering, 1999, 125(3) : 148-157.
  • 10Daly C, Taylor G, Gibson W. The PRISM approach to mapping precipitation and temperature. Proc. , 10th AMS Conf. On Appl. Climatology, American Meteorological Society, Boston, Mass, 1997.

共引文献35

同被引文献19

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部