期刊文献+

乙炔在Ge(001)表面吸附的反应路径(英文) 被引量:3

Reaction Pathways of Acetylene Adsorption on the Ge(001)Surface
下载PDF
导出
摘要 采用第一性原理方法研究了乙炔分子在Ge(001)表面的吸附反应.通过系统考察0.5和1.0ML覆盖度时形成di-σ和end-bridge构型的反应路径,研究在表面形成di-σ和paired-end-bridge构型的反应几率.除了表面反应以外,本文还涉及了亚表层Ge原子参与的吸附反应,乙炔在亚表层原子上吸附形成的亚稳态结构sub-di-σ,是形成end-bridge结构的第二条途径,此反应机理对于表面吸附结构的形成起重要的作用.与乙炔分子不同的是,表面以下原子参与时乙烯分子的吸附反应为吸热反应.综合热力学和动力学的分析表明,paired-end-bridge构型是乙炔分子吸附的主要构型,此结论解释了乙炔分子在Ge(001)表面吸附构型的实验结果.对于乙烯和乙炔两分子在Ge(001)表面吸附的分析比较揭示了导致两者之间差异的原因. The adsorption reaction of acetylene on the Ge(001)surface is investigated by first-principles calculations.In order to understand the relative populations of the di-σand paired-end-bridge structures,we calculated the adsorption reaction paths leading to their formation at 0.5 and 1.0 ML coverage.More importantly,we studied the adsorption channel involving sublayer Ge atoms by forming a metastable sub-di-σstructure.This sub-di-σstructure represents second reaction pathway that results in the end-bridge structure,which plays an important role in the formation of the adsorption configurations.In contrast to C 2 H 2,the adsorption of C 2 H 4 on the Ge(001)surface involving subsurface Ge atoms,is endothermic.Our calculations show from both kinetic and thermodynamic standpoints that the paired-end-bridge structure is the primary adsorption configuration that explains the experimental observations.Our work also helps to understand the fundamental differences between the adsorption of C 2 H 2 and C 2 H 4 on the Ge(001)surface.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2012年第5期1107-1112,共6页 Acta Physico-Chimica Sinica
基金 The project was supported by the National Natural Science Foundation of China(20903075) Program of Introducing Talents of Discipline to Universities,China(111 Project)(B08040)~~
关键词 密度泛函理论 Ge(001)表面 乙炔分子 形成反应 亚表层 热力学 动力学 Density functional theory Ge(001)surface Acetylene molecule Formation reaction Sublayer Thermodynamics Kinetics
  • 相关文献

参考文献2

二级参考文献58

  • 1[1]Lee J R et al 2002 Phys.Rev.Lett.88 196401
  • 2[2]Ohnishi H,Kondo Y and Takayanagi K 1998 Nature 395 780
  • 3[3]Yanson A I,Rubio Bollinger G,van den Brom H E,Agrait N and van Ruitenbeek J M 1998 Nature 395 783
  • 4[4]Gambarbella P,Dallmeyer A,Maiti K,Malagoli M C,Eberhardt W,Kern K and Carbone C 2002 Nature 416 301
  • 5[5]Marsico V,Blanc M,Kuhnke K and Kern K 1997 Phys.Rev.Lett.78 94
  • 6[6]Hoque E,Petkova A and Henzler M 2002 Surf.Sci.515 312
  • 7[7]Gambardella P,Blance M,Brunem H,Kuhnke K and Kern K 2000 Phys.Rev.B 61 2254
  • 8[8]Wierenga P E,Kubby J A and Griffith J E 1987 Phys.Rev.Lett.59 2169
  • 9[9]Baski A A,Erwin S C and Whitman L J 1997 Surf.Sci.392 69
  • 10[11]Gai Z,Zhao R G,Li W J,Fujikawa Y,Sakurai T and Yang W S 2001 Phys.Rev.B 64 125201

共引文献5

同被引文献376

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部