期刊文献+

PEG和PVP改性溶胶-凝胶二氧化硅减反膜的对比(英文) 被引量:6

Comparision of Silica Anti-Reflective Films Obtained via a Sol-Gel Process in the Presence of PEG or PVP
下载PDF
导出
摘要 聚乙二醇(PEG)和聚乙烯吡咯烷酮(PVP)对溶胶-凝胶二氧化硅减反膜的结构和激光损伤阈值(LIDT)有不同的影响.动态光散射、透射电镜(TEM)以及小角X射线散射实验表明:PEG能够促进二氧化硅颗粒的生长并增加团簇生长的一致性.然而,在PVP改性的溶胶中,Si―OH与PVP之间氢键作用制约了二氧化硅颗粒的生长.此外,多重分形谱(MFS)分析表明,PEG可以提高氧化硅薄膜的均匀性,PVP却降低了薄膜的均匀性,因此,PEG改性的氧化硅薄膜的抗激光损伤性能增强,而PVP改性的氧化硅薄膜的抗激光损伤性能被削弱.固体29Si魔角旋转核磁共振(MASNMR)结果表明,PEG能够提高Si―O四面体缩聚程度并改善薄膜的表面分形结构,PVP则相反,导致了PEG改性的氧化硅薄膜与PVP改性的氧化硅薄膜具有不同的抗激光损伤性能. The different effects of poly(ethylene glycol)(PEG)and poly(vinylpyrrolidone)(PVP)on the structure and laser-induced damage threshold(LIDT)of sol-gel silica anti-reflective films were investigated.The results of dynamic light-scattering,transmission electron microscopy(TEM),and small-angle X-ray scattering(SAXS)showed that PEG could prompt silica particles to form uniform clusters,whereas in the PVP-modified sol,the growth of silica particles was restricted.This was a result of the strong hydrogen bonds between Si―OH groups and PVP molecules Multi-fractal spectrum(MFS)analysis suggested that PEG improved the uniformity of the silica film but PVP reduced it,therefore the laser-damage resistance of the PEG-modified silica film was enhanced,but that of the PVP-modified silica film was weakened.29 Si magic-angle spinning nuclear magnetic responance(MAS NMR)showed that PEG improved the condensation of Si―O tetrahedron,but PVP did not.This led to differences between the laser-damage resistances of PEG-modified silica films and PVP-modified silica films.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2012年第5期1197-1205,共9页 Acta Physico-Chimica Sinica
基金 The project was supported by the National Natural Science Foundation of China(10835008)~~
关键词 激光损伤阈值 减反射 光学膜 表面分形 Laser-induced damage threshold Anti-reflection Optical film Surface fractal
  • 相关文献

参考文献2

二级参考文献9

共引文献32

同被引文献54

  • 1张磊,徐耀,黄进,蒋晓东,吕海滨,赵松楠,吴东,孙予罕,魏晓峰.单甲基原位改性SiO_2疏水减反膜的制备与性能研究[J].强激光与粒子束,2006,18(10):1648-1652. 被引量:5
  • 2陈菊芳,张永康,孔德军,叶霞.短脉冲激光清洗细微颗粒的研究进展[J].激光技术,2007,31(3):301-305. 被引量:8
  • 3Pan, A.; Zhu, T.;Wu, H. B.; Lou, X.W. Chem. Eur. J. 2013, 19(2), 494. doi: 10.1002/chem.201203596.
  • 4Yoshino, A. Angew . Chem. Int. Edit. 2012, 51 (24), 5798. doi: 10.1002/anie.v51.24.
  • 5Pan, A.;Wu, H. B.; Yu, L.; Lou, X.W. Angew. Chem. 2013, 125 (8), 2282. doi: 10.1002/ange.201209535.
  • 6Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Energy Environ. Sci. 2011, 4(8), 2682. doi: 10.1039/c0ee00699h.
  • 7Xiao, J.;Wang, X.; Yang, X. Q.; Xun, S.; Liu, G.; Koech, P. K.; Liu, J.; Lemmon, J. P. Adv. Funct. Mater. 2011, 21 (15), 2840. doi: 10.1002/adfm.201002752.
  • 8Liu, H.; Su, D.; Zhou, R.; Sun, B.;Wang, G.; Qiao, S. Advanced Energy Materials 2012, 2(8), 970. doi: 10.1002/aenm.v2.8.
  • 9Ding, S.; Chen, J. S.; Lou, X.W. Chem. Eur. J. 2011, 17 (47), 13142. doi: 10.1002/chem.201102480.
  • 10Jiang, Z.;Wang, C.; Du, G.; Zhong, Y. J.; Jiang, J. Z. J . Mater. Chem. 2012, 22 (19), 9494.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部