摘要
针对多地貌环境下的移动机器人路径规划问题,建立多目标优化模型,并采用微粒群算法解决该问题.首先,采用区域权值表示机器人在各种地形下的通行困难度;然后,结合局部优化准则计算机器人的通行时间,通过计算机器人与危险源之间覆盖的面积来衡量路径的危险程度,并将上述问题转化为两目标优化问题;最后,采用多目标微粒群优化算法优化上述问题.仿真结果表明了所提出方法的有效性.
For the problem of robot path planning in an environment of many terrains,mathematical model of multi-objective is established.Particle swarm optimization algorithm is used to solve the problem.Firstly,region weight is used to represent the difficulty when the robot passes through the terrain.Then passage time is calculated by utilizing local optimal criterion,and the danger degree is calculated according to the area between the danger sources and the robot's path.Thus the problem can be converted into a bi-objective problem.Finally,particle swarm optimization algorithm is used to optimize the problem above,and the simulation results show the effectiveness of the proposed method.
出处
《控制与决策》
EI
CSCD
北大核心
2012年第5期708-712,共5页
Control and Decision
基金
江苏省自然科学基金项目(BK2008125)
国家自然科学基金项目(61005089)
关键词
移动机器人路径规划
多地貌
通行时间
危险程度
微粒群算法
mobile robot path planning
many terrains
passage time
the degree of risk
particle swarm optimization