期刊文献+

多地貌环境下的移动机器人路径规划研究 被引量:6

Robot path planning in environment of many terrains
原文传递
导出
摘要 针对多地貌环境下的移动机器人路径规划问题,建立多目标优化模型,并采用微粒群算法解决该问题.首先,采用区域权值表示机器人在各种地形下的通行困难度;然后,结合局部优化准则计算机器人的通行时间,通过计算机器人与危险源之间覆盖的面积来衡量路径的危险程度,并将上述问题转化为两目标优化问题;最后,采用多目标微粒群优化算法优化上述问题.仿真结果表明了所提出方法的有效性. For the problem of robot path planning in an environment of many terrains,mathematical model of multi-objective is established.Particle swarm optimization algorithm is used to solve the problem.Firstly,region weight is used to represent the difficulty when the robot passes through the terrain.Then passage time is calculated by utilizing local optimal criterion,and the danger degree is calculated according to the area between the danger sources and the robot's path.Thus the problem can be converted into a bi-objective problem.Finally,particle swarm optimization algorithm is used to optimize the problem above,and the simulation results show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2012年第5期708-712,共5页 Control and Decision
基金 江苏省自然科学基金项目(BK2008125) 国家自然科学基金项目(61005089)
关键词 移动机器人路径规划 多地貌 通行时间 危险程度 微粒群算法 mobile robot path planning many terrains passage time the degree of risk particle swarm optimization
  • 相关文献

参考文献14

  • 1王宏,王学福,张钹,孙家广.自然地形环境下移动机器人的一种路径规划方法[J].软件学报,1995,6(3):173-178. 被引量:5
  • 2许宏岩,付宜利,王树国.局部地形变化检测与移动机器人的行为决策[J].控制与决策,2005,20(8):951-954. 被引量:4
  • 3Mohammad Mansouri, Mehdi Aliyari Schoorehdeli, Mohammad Tesnehlab. Path planning of mobile robot using integer ga with considering terrain conditions[C]. 2008 IEEE Int Conf on System, Man and Cybernetics. Singapore, 2008: 208-213.
  • 4SoundraPandian K K, Iaeng Priyanka Mathur. Traversability assessment of terrain for autonomous robot navigation[C]. Proc of the Int Multi-Conf of Engineers and Computer Scientists. Hong Kong, 2010: 1286-1289.
  • 5Ellips MASEHIAN,Davoud SEDIGHIZADEH.Multi-objective robot motion planning using a particle swarm optimization model[J].Journal of Zhejiang University-Science C(Computers and Electronics),2010,11(8):607-619. 被引量:11
  • 6Li Xiao-dong. Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function[C]. Proc of the Genetic and Evolutionary Computation Conf. Washington, 2004:117-128.
  • 7Hu Cheng-yu, Wu Xiang-ning, Liang Qing-zhong, et al. Autonomous robot path planning based on swarm intelligence and stream functions[J]. Lecture Notes in Computer Science, 2007, 4684: 277-284.
  • 8Mitchell J S B. An algorithmic approach to some problems in terrain navigation[J]. Artificial Intelligence, 1988, 37(2): 184-189.
  • 9Richbourg R F, Rowe N C, Zyda M J, et al. Solving global two-dimensional routing problems using Snell's Law and A. search[C]. Proc of IEEE Conf Robotics and Automation. Washington DC, 1987: 1631-1636.
  • 10Rowe N C. A new method for optimal path planning through nonhomogeneous free spacep[R]. Nava: Nava Postgraduate School, 1987.

二级参考文献53

  • 1Asano,T.,Asano,T.,Guibas,L.,Hershberger,J.,Imai,H.,1985.Visibility-Polygon Search and Euclidean Shortest Path.Proc.26th Symp.on Foundations of Computer Science,p.155-164.
  • 2Bhattacharya,P.,Gavrilova,M.,2008.Path planning with the required minimum clearance using the Voronoi diagram methodology.IEEE Rob.Autom.Mag.,15(2):58-66.[doi:10.1109/MRA.2008.921540].
  • 3Canny,J.F.,1985.A Voronoi Method for the Piano-Movers Problem.Proc.IEEE Int.Conf.on Robotics and Automation,2:530-535.
  • 4Canny,J.F.,1987.A New Algebraic Method for Robot Motion Planning and Real Geometry.Proc.28th IEEE Annual Symp.on Foundations of Computer Science,p.39-48.
  • 5Canny,J.F.,1988.The Complexity of Robot Motion Planning.MIT Press,Cambridge,MA,USA.
  • 6Caponetto,R.,Fortuna,L.,Fazzino,S.,Xibilia,M.G.,2003.Chaotic sequences to improve the performance of evolutionary algorithms.IEEE Trans.Evol.Comput.,7(3):289-304.[doi:10.1109/TEVC.2003.810069].
  • 7Cen,Y.,Wang,L.,Zhang,H.,2007.Real-Time Obstacle Avoidance Strategy for Mobile Robot Based on Improved Coordinating Potential Field with Genetic Algorithm.IEEE Int.Conf.on Control Applications,p.415-419.[doi:10.1109/CCA.2007.4389268].
  • 8Chang,H.C.,Liu,J.S.,2009.High-Quality Path Planning for Autonomous Mobile Robots with η3-Splines and Parallel Genetic Algorithms.IEEE Int.Conf.on Robotics and Biomimetics,p.1671-1677.[doi:10.1109/ROBIO.2009.4913252].
  • 9Chen,X.,Li,Y.,2006.Smooth Path Planning of a Mobile Robot Using Stochastic Particle Swarm Optimization.Proc.IEEE Int.Conf.on Mechatronics and Automation,p.1722-1727.
  • 10Choset,H.,Lynch,K.M.,Hutchinson,S.,Kantor,G.,Burgard,W.,Kavraki,L.E.,Thrun,S.,2005.Principles of Robot Motion:Theory,Algorithms,and Implementations.MIT Press,Boston.

共引文献17

同被引文献37

  • 1王卓,赵杰,王卫忠.基于旋量理论的可重构机器人运动学的研究[J].机械与电子,2004,22(7):13-17. 被引量:7
  • 2Oberkampf W L, Helton J C, Joslyn C A, et al. Challenge problems : Uncertainty in system response given uncertain parameters[ J]. Reliability Engineering and System Safety, 2004,85(1-3) :11-19.
  • 3Zaman K, Rangavajhala S, McDonald M P, et al. A prob- abilistie approach for representation of interval uncertainty [J]. Reliability Engineering and System Safety, 2011,96 (1) :117-130.
  • 4Zhao Z H, Han X, Jiang C, et al. A nonlinear interval- based optimization method with local-densifying approxima- tion teehnique[J]. Structure and Multidisciplinary Optimi- zation, 2010,42(4) :559-573.
  • 5Majumder L, Rao S S. Interval-based optimization of air- craft wings under landing loads [ J ]. Computers and Stnlc- tures, 2009,87 ( 3-4 ) : 225-235.
  • 6Limbourg P, Aponte D E S. An optimization algorithm for imprecise multi-objective problem functions [ C ]// Pro- ceedings of the 2005 IEEE Congress on Evolutionary Com- putation. 2005,1:459-466.
  • 7Gong D W, Qin N N, Sun X Y. Evolutionary algorithms for multi-objective optimization problems with interval pa- rameters[C]// Proceedings of the 5th IEEE International Conference on Bio-Inspired Computing: Theories and Ap- plications. 2010:411-420.
  • 8耿娜.特定环境下机器人路径规划[D].徐州:中国矿业大学,2011.
  • 9Liu S R, Mao L B, Yu J S. Path planning based on ant colony algorithm and distributed local navigation for nndti- robot systems [ C ]//Proceedings of the 2006 IEEE Interna- tional Conference on Mechatronics and Automation. 2006: 1733-1738.
  • 10Sun J, Gong D W, Sun X Y. Solving interval mtlti-objec- tire optimization problems using evolutionary algorithms with preference polyhedron[ C]// Proceedings of the 13th Annum Conference on Genetic and Evolutionary Computa- tion. 2011:729-736.

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部