期刊文献+

基于核主成分降维的RBF网络降水预测 被引量:6

On RBF Network Precipitation Forecast Based on Kernel Principal Component Dimension Reduction
下载PDF
导出
摘要 针对径向基函数神经网络(RBF网络)的隐层节点数、中心和宽度难以确定的问题,为提高网络性能,首先采用模糊聚类分析法对样本数据进行初始聚类,以初始分类间的最小距离作为初始宽度;然后引入正交最小二乘法训练出新的数据中心、个数及权值,修改宽度为当前数据中心间的最小距离;最后采用梯度下降法训练并调整中心、宽度及权值;几种算法进行的组合优化改进,使网络泛化性能更优.由于降水影响因子众多,采用了核主成分分析法(KPCA)对样本数据进行特征提取降维预处理.对广西5月3区的日降水量使用上述模型进行预报实验,结果表明,该模型具有较好的泛化性能,预报准确率高于T213降水预报模式,具有一定的推广价值. Aiming at the problems that are difficult to identify the number of hidden layer nodes in the radial basis function neural network (RBF network), centers and widths, this paper, in order to improve the network performance ,firstly used the fuzzy clustering analysis method to the sample data for the initial clustering with an initial classification of minimum distance between as the initial width;then, in- troduced the orthogonal least squares to train a new data center, the number and weights to modify the width between the current data cen- ter minimum distance;finally adopted the gradient descent to train and adjust the center,width and weight. Several algorithms were com- bined and optimized to better the generalization performance of network. Due to the rainfall affecting factors varied, The nuclear principal component analysis(KPCA) applied in the sample data pretreatment feature extraction dimension reduction. This method has been applied in 3 districts of Guangxi' s daily precipitation in May, the results show that the model had a good generalization performance, the forecasting accuracy was higher than that of T213 precipitation forecast model,it has certain popular value.
作者 李洁
出处 《柳州师专学报》 2012年第1期111-117,共7页 Journal of Liuzhou Teachers College
基金 柳州师专科研项目"智能优化算法技术在资产组合中的应用研究"(LSZ2010C005)
关键词 核主成分 降维 径向基函数神经网络 降水预测 Kernel principal component dimension reduction RBF neural network precipitation prediction
  • 相关文献

参考文献8

二级参考文献51

  • 1陆系群,余英林.设计前馈神经网络结构的一种新方法[J].华南理工大学学报(自然科学版),1998,26(1):112-115. 被引量:3
  • 2叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 3FredricMH,IvicaK.神经计算原理[M].叶世伟译.北京:机械工业出版社,2007.
  • 4S Haykin. Neural networks: A comprehensive foundation [ M ]. 2nd ed. Beijing: China Machine Press, 2004. 183 -220.
  • 5J Moody, C J Darken. Fast learning in networks of locally - tuned processing units[ J]. Neural Computing, 1989,1 (2) :281 - 294.
  • 6M R Berthold, J Diamond. Boosting the performance of RBF networks with dynamic decay adjustment [ J ]. Advances in Neural Information Processing Systems, 1995,7 (3) :521 - 528.
  • 7M J Orr. Regularisation in the selection of RBF centres. Neural Computation, 1995, 7(3): 606-623.
  • 8F Schwenker, H A Kestler, G Palm. Three Learning Phases for Radial- basis- function Networks[J]. Neural Networks, 2001, 14(4/5) :439 -458.
  • 9G D Magoulas, M N Vrahatis, G S Androulakis. Effective Backpropagation Training with Variable Stepsize [ J ]. Neural Networks, 1997,10( 1 ) :69 -82.
  • 10SCHAKOPF B, SMOLA A. Learning with kernels: support vector machines, regularization, optimization and beyond. MIT Press, 2002.

共引文献79

同被引文献41

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部